OCR Maths C3

Mark Scheme Pack

2005-2014

1	(i)	State $\mathrm{f}(\mathrm{x}) \leq 10$	B1	1 [Any equiv but must be or imply \leq]
	(ii)	Attempt correct process for composition of functions Obtain 6 or correct expression for $\mathrm{ff}(x)$ Obtain - 71	M1 A1 A1	[whether algebraic or numerical]
2		Either Obtain $x=0$ Form linear equation with signs of $6 x$ and x different State $6 x-1=-x+1$ Obtain $\frac{2}{7}$ and no other non-zero value	B1 M1 A1 A1	[ignoring errors in working] [ignoring other sign errors] [or correct equiv with or without brackets] 4 [or exact equiv]
	Or	Obtain $36 x^{2}-12 x+1=x^{2}-2 x+1$ Attempt to solve quadratic equation Obtain $\frac{2}{7}$ and no other non-zero value Obtain 0	B1 M1 A1 B1	[or equiv] [as far as factorisation or subn into formula] [or exact equiv] (4) [ignoring errors in working]
3	(i)	Attempt solution involving (natural) logarithm Obtain $-0.017 t=\ln \frac{25}{180}$ Obtain 116	M1 A1 A1	[or equiv] 3 [or greater accuracy rounding to 116]
	(ii)	Differentiate to obtain $k \mathrm{e}^{-0.017 t}$ Obtain correct $-3.06 \mathrm{e}^{-0.017 t}$ Obtain 1.2	M1 A1 A1	[any constant k different from 180; solution must involve differentiation] [or unsimplified equiv; accept + or -] 3 [or greater accuracy; accept + or - answer]
4	(a)	State or imply $\int \pi y^{2} \mathrm{~d} x$ Integrate to obtain $k \ln x$ Obtain $4 \pi \ln x$ or $4 \ln x$ Obtain $4 \pi \ln 5$	B1 M1 A1 A1	[any constant k, involving π or not; or equiv such as $k \ln 4 x$] [or equiv] 4 [or similarly simplified equiv]

	(b)	Attempt calculation involving attempts at y values Attempt $\frac{1}{3} \times 1\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$ Obtain $\frac{1}{3}(\sqrt{2}+4 \sqrt{5}+2 \sqrt{10}+4 \sqrt{17}+\sqrt{26})$ Obtain 12.758	M1 M1 A1 A1	[with each of $1,4,2$ present at least once as coefficients] [with attempts at five y values] [or exact equiv or decimal equivs] 4 [or greater accuracy]
5	(i)	Obtain $R=\sqrt{13}$, or 3.6 or 3.61 or greater accuracy Attempt recognisable process for finding α Obtain $\alpha=33.7$	B1 M1 A1	[allow sine/cosine muddles] 3 [or greater accuracy]
	(ii)	Attempt to find at least one value of $\theta+\alpha$ Obtain value rounding to 76 or 104 Subtract their α from at least one value Obtain one value rounding to 42 or 43 , or to 70 Obtain other value 42.4 or 70.2	*M1 A1 $\sqrt{ }$ M1 A1 A1	[following their R] [dependent on ${ }^{*} \mathbf{M}$] 5 [or greater accuracy; no other answers between 0 and 360 ; ignore answers outside 0 to 360]
6	(a)	Attempt use of product rule Obtain $\ln x+1$ Equate attempt at first derivative to zero and obtain value involving e Obtain e^{-1}	*M1 A1 M1 A1	[or unsimplified equiv] [dependent on *M] 4 [or exact equiv]
	(b)	Attempt use of quotient rule Obtain $\frac{(4 x-c) 4-4(4 x+c)}{(4 x-c)^{2}}$ Show that first derivative cannot be zero	M1 A1 A1	[or equiv using product rule or ...] [or equiv] 3 [AG; derivative must be correct]
7	(i)	State $2 \cos ^{2} x-1$	B1	1
	(ii)	Attempt to express left hand side in terms of $\cos x$ Identify $\frac{1}{\cos x}$ as $\sec x$	M1	[using expression of form $\left.a \cos ^{2} x+b\right]$ [maybe implied]

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Confirm result \& A1 \& 3 [AG; necessary detail required] \\
\hline \& (iii) \& \begin{tabular}{l}
Use identity \(\sec ^{2} x=1+\tan ^{2} x\) \\
Attempt solution of quadratic equation in tan \(x\) \\
Obtain \(2 \tan ^{2} x+3 \tan x-9=0\) and hence \(\tan\) \(x=-3, \frac{3}{2}\) \\
Obtain at least two of 0.983, 4.12, 1.89, 5.03 \\
(or of \(0.313 \pi, 1.31 \pi, 0.602 \pi, 1.60 \pi\)) \\
Obtain all four solutions
\end{tabular} \& B1
M1
A1
A1

A1 \& | [or equiv] |
| :--- |
| [allow answers with only 2 s.f.; allow greater accuracy; allow $0.983+\pi, 1.89+\pi$ allow degrees: 56, 236, 108, 288] 5 [now with at least 3 s.f.; must be radians; no other solutions in the range 0-2 π, ignore solutions outside range $0-2 \pi$] |

\hline \multirow[t]{3}{*}{8} \& (i) \& | Attempt relevant calculations with 5.2 and 5.3 |
| :--- |
| Obtain correct values |
| Conclude appropriately | \& M1

A1

A1 \& | $\begin{array}{lccc} x & y_{1} & y_{2} & y_{1}-y_{2} \\ 5.2 & 2.83 & 2.87 & -0.04 \\ 5.3 & 2.89 & 2.88 & 0.006 \end{array}$ |
| :--- |
| 3 [AG; comparing y values or noting sign change in difference in y values or equiv] |

\hline \& (ii) \& | Equate expressions and attempt rearrangement to $x=$ |
| :--- |
| Obtain $x=\frac{5}{3} \ln (3 x+8)$ | \& M1

A1 \& 2 [AG; necessary detail required]

\hline \& (iii) \& | Obtain correct first iterate |
| :--- |
| Carry out correct process to find at least two iterates in all |
| Obtain 5.29 | \& | B1 |
| :--- |
| M1 |
| A1 | \& 3 [must be exactly 2 decimal places;

$$
\begin{aligned}
& 5.2 \rightarrow 5.2687 \rightarrow 5.2832 \rightarrow 5.2863 \rightarrow 5.2869 ; \\
& 5.25 \rightarrow 5.2793 \rightarrow 5.2855 \rightarrow 5.2868 \rightarrow 5.2870 ; \\
& 5.3 \rightarrow 5.2898 \rightarrow 5.2877 \rightarrow 5.2872 \rightarrow 5.2871]
\end{aligned}
$$

\hline \& (iv) \& Obtain integral of form $k(3 x+8)^{\frac{4}{3}}$ Obtain integral of form $k \mathrm{e}^{\frac{1}{5} x}$ \& M1
M1 \&

\hline
\end{tabular}

		Obtain $\frac{1}{4}(3 x+8)^{\frac{4}{3}}-5 \mathrm{e}^{\frac{1}{5} x}$ Apply limits 0 and their answer to (iii) Obtain 3.78	A1 M1 A1	[or equiv] [applied to difference of two integrals] 5 [or greater accuracy]
9	(i)	Indicate stretch and (at least one) translation State translation by 7 units in negative x direction State stretch in x direction with factor $1 / m$ Indicate translation by 4 units in negative y direction	M1 A1 A1 B1	[... in general terms] [or equiv; using correct terminology] [must follow the translation by 7; or equiv; using correct terminology] 4 [or equiv; at any stage; the two translations may be combined]
	(ii)	Refer to each y value being image of unique x value Attempt correct process for finding inverse Obtain expression involving $(x+4)^{2}$ or $(y+4)^{2}$ Obtain $\frac{(x+4)^{2}-7}{m}$	B1 M1 M1 A1	[or equiv] 4 [or equiv]
	(iii)	Refer to fact that curves are reflections of each other in line $y=x$ Attempt arrangement of either $\mathrm{f}(x)=x$ or $\mathrm{f}^{-1}(x)=x$ Apply discriminant to resulting quadratic equati on Obtain $(m-2)(m-14)<0$ Obtain $2<m<14$	B1 M1 M1 A1 A1	[or equiv] [or equiv] 5

1 Obtain integral of form $k \ln x$
Obtain $3 \ln 8-3 \ln 2$
M1 [any non-zero constant k; or equiv such as $k \ln 3 x$]

Attempt use of at least one relevant log property M1
[or exact equiv]
[would be earned by initial $\ln x^{3}$]
Obtain $3 \ln 4$ or $\ln 8^{3}-\ln 2^{3}$ and hence $\ln 64$ A1 4 [AG; with no errors]

2 Attempt use of identity linking $\sec ^{2} \theta$, $\tan ^{2} \theta$ and 1

M1 [to write eqn in terms of $\tan \theta$]
Obtain $\tan ^{2} \theta-4 \tan \theta+3=0$
Attempt solution of quadratic eqn to find two values
of $\tan \theta$
Obtain at least two correct answers
Obtain all four of 45, 225, 71.6, 251.6

M1
A1
A1 5 [allow greater accuracy or angles to nearest degree - and no other answers between 0 and 360]

3 (a) Attempt use of product rule
Obtain $2 x(x+1)^{6} \ldots$
Obtain $\ldots+6 x^{2}(x+1)^{5}$
(b) Attempt use of quotient rule

Obtain $\frac{\left(x^{2}-3\right) 2 x-\left(x^{2}+3\right) 2 x}{\left(x^{2}-3\right)^{2}}$
Obtain -3

M1 [involving ... + ...]
A1
A1 3 [or equivs; ignore subsequent attempt at simplification]

M1 [or, with adjustment, product rule; allow u / v confusion]

A1 [or equiv]
A1 3 [from correct derivative only]

4 (i) State $y \leq 2$
(ii) Show correct process for composition of functions

Obtain 0 and hence 2
(iii) State a range of values with 2 as one end-point State $0<k \leq 2$

A1 2 [and no other value]
M1 [continuous set, not just integers]
A1 2 [with correct $<$ and \leq now]
B1 1 [or equiv; allow <; allow any letter or none]

M1 [numerical or algebraic]
$5 \quad$ Obtain integral of form $k(1-2 x)^{6}$
Obtain correct $-\frac{1}{12}(1-2 x)^{6}$
Use limits to obtain $\frac{1}{12}$
Obtain integral of form $k \mathrm{e}^{2 x-1}$
Obtain correct $\frac{1}{2} \mathrm{e}^{2 x-1}-x$
Use limits to obtain $-\frac{1}{2} \mathrm{e}^{-1}$
Show correct process for finding required area

Obtain $\frac{1}{12}+\frac{1}{2} \mathrm{e}^{-1}$

6 (a) Either: State proportion $\frac{440}{275}$
Attempt calculation involving proportion
Obtain 704
Or: Use formula of form $275 e^{k t}$ or $275 a^{t}$
Obtain $k=0.047$ or $a=\sqrt[10]{1.6}$
Obtain 704
(b)(i) Attempt correct process involving logarithm

Obtain $\ln \frac{20}{80}=-0.02 t$
Obtain 69
(ii)Differentiate to obtain $k \mathrm{e}^{-0.02 t}$

Obtain $-1.6 \mathrm{e}^{-0.02 t}$ (or $1.6 \mathrm{e}^{-0.02 t}$)
Obtain 0.88

B1

M1 [involving multn and X value]
A1 3
M1 [or equiv]
A1 [or equiv]
A1 (3) [allow ± 0.5]
M1 [or equiv including systematic trial and improvement attempt]
A1 [or equiv]
A1 3 [or greater accuracy; scheme for T\&I: M1A2]

M1 [any constant k different from 80]
A1 [or unsimplified equiv]
A1 3 [or greater accuracy; allow -0.88]

7 (i) Sketch curve showing (at least) translation in x direction
Show correct sketch with one of 2 and 3π indicated
\ldots and with other one of 2 and 3π indicated
(ii) Draw straight line through O with positive gradient
(iii) Attempt calculations using 1.8 and 1.9

Obtain correct values and indicate change of sign
(iv) Obtain correct first iterate 1.79 or 1.78

Attempt correct process to produce at least 3 iterates
Obtain 1.82

Attempt rearrangement of $3 \cos ^{-1}(x-1)=x$ or of $x=1+\cos \left(\frac{1}{3} x\right)$
Obtain required formula or equation respectively

M1 [either positive or negative]

A1
A1 3

B1 1 [label and explanation not required]
M1 [allow here if degrees used]
A1 2 [or equiv; $x=1.8:$ LHS $=1.93$, $\operatorname{diff}=0.13$; $x=1.9:$ LHS $=1.35$, diff $=-0.55$;
radians needed now]
B1 [or greater accuracy]
M1
A1 [answer required to exactly 2 d.p.;
$2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200$; SR: answer 1.82 only - B2]

M1 [involving at least two steps]

A1 5

8 (i) Differentiate to obtain $k x\left(5-x^{2}\right)^{-1}$
Obtain correct $-2 x\left(5-x^{2}\right)^{-1}$
Obtain -4 for value of derivative
Attempt equation of straight line through $(2,0)$ numerical value of gradient obtained from attempt at derivative
Obtain $y=-4 x+8$
(ii) State or imply $h=\frac{1}{2}$

Attempt calculation involving attempts
at y values

Obtain $k(\ln 5+4 \ln 4.75+2 \ln 4+4 \ln 2.75+\ln 1) A$
M1
[not for attempt at eqn of normal]
A1 5 [or equiv]
B1

M1 [addition with each of coefficients
1, 2, 4 occurring at least once]
[or equiv perhaps with decimals; any constant k]
Obtain 2.44
(iii) Attempt difference of two areas

Obtain 8-2.44 and hence 5.56

M1 [any non-zero constant]
A1 [or equiv]
) with

A1 4 [allow ± 0.01]
M1 [allow if area of their triangle < area A]
A1 $\sqrt{ } 2$ [following their tangent and area of A providing answer positive]

9 (i) State $\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$
Use at least one of $\sin 2 \theta=2 \sin \theta \cos \theta$ and

$$
\cos 2 \theta=1-2 \sin ^{2} \theta
$$

Attempt complete process to express
in terms of $\sin \theta$
Obtain $3 \sin \theta-4 \sin ^{3} \theta$
(ii) State 3

Obtain expression involving $\sin 10 \alpha$
Obtain 9
(iii) Recognise $\operatorname{cosec} 2 \beta$ as $\frac{1}{\sin 2 \beta}$

Attempt to express equation in terms of $\sin 2 \beta$ only
Attempt to find non-zero value of $\sin 2 \beta$
Obtain at least $\sin 2 \beta=\sqrt{\frac{5}{12}}$
Attempt correct process to find two values of β
Obtain 20.1, 69.9

B1

B1

M1 [using correct identities]
A1 4 [AG; all correctly obtained]

B1

M1 [allow θ / α confusion]
A1 3 [and no other value]

B1 [allow θ / β confusion]

M1 [or equiv involving $\cos 2 \beta$]
M1 [or of $\cos 2 \beta$]
A1 [or equiv, exact or approx]
M1 [provided equation is $\sin 2 \beta=k$; or equiv with $\cos 2 \beta$]
A1 6 [and no others between 0 and 90]

1 Differentiate to obtain $k(4 x+1)^{-\frac{1}{2}}$
Obtain $2(4 x+1)^{-\frac{1}{2}}$
Obtain $\frac{2}{3}$ for value of first derivative
Attempt equation of tangent through $(2,3)$

Obtain $y=\frac{2}{3} x+\frac{5}{3}$ or $2 x-3 y+5=0$

2
Either: Attempt to square both sides
Obtain $3 x^{2}-14 x+8=0$
Obtain correct values $\frac{2}{3}$ and 4 Attempt valid method for solving inequality

Obtain $\frac{2}{3}<x<4$

Or: Attempt solution of two linear equations or inequalities

Obtain value $\frac{2}{3}$
Obtain value 4
Attempt valid method for solving inequality

$$
\text { Obtain } \frac{2}{3}<x<4
$$

A1
M1 any non-zero constant k
A1 or equiv, perhaps unsimplified
A1 or unsimplified equiv
M1 using numerical value of first derivative provided derivative is of form $k^{\prime}(4 x+1)^{n}$
A1 5 or equiv involving 3 terms

M1 producing 3 terms on each side
A1 or inequality involving < or >
A1
M1 implied by correct answer or plausible incorrect answer
A1 5 or correctly expressed equiv;
allow \leq signs

M1 one eqn with signs of $2 x$ and x the same, second eqn with signs different

B1
M1 implied by correct answer or plausible incorrect answer
A1 (5) or correctly expressed equiv; allow \leq signs

3 (i) Attempt evaluation of cubic expression at 2 and 3 M1
Obtain -11 and 31
Conclude by noting change of sign
(ii) Obtain correct first iterate

Attempt correct process to obtain at least 3 iterates Obtain 2.34

B1 using x_{1} value such that $2 \leq x_{1} \leq 3$
A1
A1 $\sqrt{ } 3$ or equiv; following any calculated values provided negative then positive

M1 using any starting value now
A1 3 answer required to 2 d.p. exactly;
$2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$;
$2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$;
$3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4 (i) State $\ln y=(x-1) \ln 5$

Obtain $x=1+\frac{\ln y}{\ln 5}$
B1 whether following $\ln y=\ln 5^{x-1}$ or not; brackets needed

B1 2 AG; correct working needed; missing brackets maybe now implied
(ii) Differentiate to obtain single term of form $\frac{k}{y} \mathbf{M} \mathbf{1}$ Obtain $\frac{1}{y \ln 5}$
(iii) Substitute for y and attempt reciprocal

Obtain $25 \ln 5$
A1 2 or exact equiv

5 (i) State $\sin 2 \theta=2 \sin \theta \cos \theta$
(ii) Attempt to find exact value of $\cos \alpha$

Obtain $\frac{1}{4} \sqrt{15}$
Substitute to confirm $\frac{1}{8} \sqrt{15}$
(iii) State or imply $\sec \beta=\frac{1}{\cos \beta}$

Use identity to produce equation involving $\sin \beta$
Obtain $\sin \beta=0.3$ and hence 17.5

B1 1 or equiv; any letter acceptable here (and in parts (ii) and (iii))

M1 using identity attempt or rightangled triangle
A1 or exact equiv
A1 3 AG

B1
M1
A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

7 (a) Obtain integral of form $k(4 x-1)^{-1}$
B1 maybe implied
A1 3
Or: Show correct process for compn of functionsM1 using algebraic approach
A1 or equiv
A1 (3)
M1 as far as $x=\ldots$ or equiv
A1 or equiv perhaps involving x
A1 3 or equiv; in terms of x now

M1

A1 with end-point on x-axis and no minimum point in third quadrant
A1 3 accept -1.4 in place of $-\sqrt{2}$

M1 any non-zero constant k

Obtain $-\frac{1}{2}(4 x-1)^{-1}$
Substitute limits and attempt evaluation

Obtain $\frac{2}{21}$
(b) Integrate to obtain $\ln x$

Substitute limits to obtain $\ln 2 a-\ln a$
Subtract integral attempt from attempt at area of appropriate rectangle
Obtain 1 - (ln $2 a-\ln a)$
Show at least one relevant logarithm property
Obtain $1-\ln 2$ and hence $\ln \left(\frac{1}{2} e\right)$

A1 or equiv; allow $+c$
M1 for any expression of form $k^{\prime}(4 x-1)^{n}$
A1 4 or exact equiv

B1
B1
M1 or equiv
A1 or equiv
M1 at any stage of solution
A1 6 AG; full detail required

8 (i) State $R=13$
State at least one equation of form $R \cos \alpha=k$, $R \sin \alpha=k^{\prime}, \tan \alpha=k^{\prime \prime}$

Obtain 67.4
(ii) Refer to translation and stretch

State translation in positive x direction by 67.4
State stretch in y direction by factor 13
(iii) Attempt value of $\cos ^{-1}(2 \div R)$

Obtain 81.15
Obtain 148.5 as one solution
Add their α value to second value correctly attempted
Obtain 346.2

B1 or equiv
M1 or equiv; allow sin / cos muddles; implied by correct α
A1 3 allow 67 or greater accuracy
M1 in either order; allow here equiv terms such as 'move', 'shift'; with both transformations involving constants
$\mathbf{A 1} \sqrt{ }$ or equiv; following their α; using correct terminology now
A1 $\sqrt{ } 3$ or equiv; following their R; using correct terminology now

M1

A1 $\sqrt{ }$ following their R; accept 81
A1 accept 148.5 or 148.6 or value rounding to either of these

M1
A1 5 accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

Obtain $x=\mathrm{e}^{\frac{1}{2} y}+1$
State or imply volume involves $\int \pi x^{2}$
Attempt to express x^{2} in terms of y
Obtain $k \int\left(\mathrm{e}^{y}+2 \mathrm{e}^{\frac{1}{2} y}+1\right) \mathrm{dy}$
Integrate to obtain $k\left(\mathrm{e}^{y}+4 \mathrm{e}^{\frac{1}{2} y}+y\right)$
Use limits 0 and p
Obtain $\pi\left(\mathrm{e}^{p}+4 \mathrm{e}^{\frac{1}{2} p}+p-5\right)$
(ii) State or imply $\frac{\mathrm{d} p}{\mathrm{~d} t}=0.2$

Obtain $\pi\left(\mathrm{e}^{p}+2 \mathrm{e}^{\frac{1}{2} p}+1\right)$ as derivative of V
Attempt multiplication of values or expressions

$$
\text { for } \frac{\mathrm{d} p}{\mathrm{~d} t} \text { and } \frac{\mathrm{d} V}{\mathrm{~d} p}
$$

Obtain $0.2 \pi\left(\mathrm{e}^{4}+2 \mathrm{e}^{2}+1\right)$
Obtain 44

A1 or equiv
B1
*M1 dep *M; expanding to produce at least 3 terms

A1 any constant k including 1; allow if dy absent
A1
M1 $\quad \operatorname{dep} * \mathbf{M}$ * \mathbf{M}; evidence of use of 0 needed

A1 8 AG; necessary detail required

B1 maybe implied by use of 0.2 in product
B1

M1
A1 $\sqrt{ }$ following their $\frac{\mathrm{d} V}{\mathrm{~d} p}$ expression
A1 5 or greater accuracy

1 Attempt use of quotient rule to find derivative
Obtain $\frac{2(3 x-1)-3(2 x+1)}{(3 x-1)^{2}}$
Obtain $-\frac{5}{4}$ for gradient
Attempt eqn of straight line with numerical gradient
Obtain $5 x+4 y-11=0$

2 (i) Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$
(ii) Attempt relevant identity for $\cos 2 \theta$

State correct identity with correct value(s) substituted
Obtain $-\frac{119}{169}$

M1

A1 5 or similar equiv
allow for numerator 'wrong way round'; or attempt use of product rule
A1 or equiv
or equiv
M1 obtained from their $\frac{d y}{d x}$; tangent not normal

M1 rt-angled triangle, identities, calculator, ...
A1 2 or exact equiv

M1 $\pm 2 \cos ^{2} \theta \pm 1$ or $\pm 1 \pm 2 \sin ^{2} \theta$ or $\pm\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
A1
A1 3 correct answer only earns 3/3

3 (a) Sketch reasonable attempt at $y=x^{5}$

Sketch straight line with negative gradient Indicate in some way single point of intersection B1
(b) Obtain correct first iterate

Carry out process to find at least 3 iterates in all M1
Obtain at least 1 correct iterate after the first A1
Conclude 2.175

$$
\begin{aligned}
{[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.17480 \rightarrow 2.17479} \\
1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 \rightarrow 2.17479 \\
2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.17479 \rightarrow 2.17479 \\
3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17479 \rightarrow 2.17479]
\end{aligned}
$$

4 (i) Obtain derivative of form $k(4 t+9)^{-\frac{1}{2}}$
Obtain correct $2(4 t+9)^{-\frac{1}{2}}$
Obtain derivative of form $\mathrm{ke}^{\frac{1}{2} x+1}$
Obtain correct $3 \mathrm{e}^{\frac{1}{2} x+1}$
(ii) Either: Form product of two derivatives M1 Substitute for t and x in product M1 Obtain 39.7
Or: Obtain $k(4 t+9)^{n} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Obtain correct $6(4 t+9)^{-\frac{1}{2}} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Substitute $t=4$ to obtain $39.7 \quad$ A1
5 (i) Obtain $R=\sqrt{17}$ or 4.12 or 4.1
Attempt recognisable process for finding α Obtain $\alpha=14$

M1 any constant k
A1 or (unsimplified) equiv
M1 any constant k different from 6
A1 4 or equiv
numerical or algebraic
using $t=4$ and calculated value of x
A1 3 allow ± 0.1; allow greater accuracy
M1 differentiating $y=6 \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
A1 or equiv
(3) allow ± 0.1; allow greater accuracy

B1 or greater accuracy
M1 allow for sin/cos confusion
A1 3 or greater accuracy $14.036 \ldots$
(ii) Attempt to find at least one value of $\theta+\alpha$

Obtain or imply value 61
Obtain 46.9
Show correct
Obtain -75

M1
A1 $\sqrt{ } \quad$ following R value; or value rounding to 61 A1 allow ± 0.1; allow greater accuracy

A1

5 allow ± 0.1; allow greater accuracy; max of $4 / 5$ if extra angles between -180 and 180

6 (i) Obtain integral of form $k(3 x+2)^{\frac{1}{2}}$
Obtain correct $\frac{2}{3}(3 x+2)^{\frac{1}{2}}$
M1 any constant k
A1 or equiv
Substitute limits 0 and 2 and attempt evaluation M1
Obtain $\frac{2}{3}\left(8^{\frac{1}{2}}-2^{\frac{1}{2}}\right)$
A1 4 or exact equiv suitably simplified
(ii) State or imply $\pi \int \frac{1}{3 x+2} \mathrm{~d} x$ or unsimplified version

Obtain integral of form $k \ln (3 x+2)$
M1
Obtain $\frac{1}{3} \pi \ln (3 x+2)$ or $\frac{1}{3} \ln (3 x+2)$
A1
Show correct use of $\ln a-\ln b$ property M1
Obtain $\frac{1}{3} \pi \ln 4$
A1 5 or (similarly simplified) equiv

7 (i) State a in x-direction
State factor 2 in x-direction
(ii) Show (largely) increasing function crossing x-axis

Show curve in first and fourth quadrants only
(iii) Show attempt at reflecting negative part in x-axis Show (more or less) correct graph
(iv) Identify $2 a$ as asymptote or $2 a+2$ as intercept State $2 a<x \leq 2 a+2$

B1 allow anywhere in question
B1 2 allow $<$ or \leq for each inequality

8 (i) Obtain $-2 x \mathrm{e}^{-x^{2}}$ as derivative of $\mathrm{e}^{-x^{2}}$
Attempt product rule
Obtain $8 x^{7} \mathrm{e}^{-x^{2}}-2 x^{9} \mathrm{e}^{-x^{2}}$
Either: Equate first derivative to zero and attempt solution
Confirm 2
Or: \quad Substitute 2 into derivative and show attempt at evaluation M1

Obtain 0

B1
*M1 allow if sign errors or no chain rule
A1 or (unsimplified) equiv
M1 dep *M; taking at least one step of solution
A1 5 AG

A1 (5) AG; necessary correct detail required
(ii) Attempt calculation involving attempts at y values

Attempt $k\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$

Obtain $\frac{1}{6}(0+4 \times 0.00304+2 \times 0.36788$
$+4 \times 2.70127+4.68880)$
Obtain 2.707
(iii) Attempt 4(y value) - 2(part (ii))

Obtain 13.3

M1 with each of 1, 4, 2 present at least once as coefficients
with attempts at five y values corresponding to correct x values

A1 or equiv with at least 3 d.p. or exact values
A1 4 or greater accuracy; allow ± 0.001
M1 or equiv
A1 2 or greater accuracy; allow ± 0.1

9 (i) State $-2 \leq y \leq 2$
State $y \leq 4$
(ii) Show correct process for composition

Obtain or imply 0.959 and hence 2.16
M1
right way round
AG; necessary detail required
B1 or (unsimplified) equiv
B1 $\mathbf{4}$ or equiv
(iii) Relate quadratic expression to at least one end of range of $\mathrm{f} \quad \mathrm{M} 1$ or equiv
Obtain both of $4-2 x^{2}<-2$ and $4-2 x^{2}>2$ A1 or equiv; allow any sign in each ($<$ or \leq or $>$ or \geq or $=$)
Obtain at least two of the x values $-\sqrt{3},-1,1, \sqrt{3}$ A1
Obtain all four of the x values
Attempt solution involving four x values M1
Obtain $x<-\sqrt{3}, \quad-1<x<1, \quad x>\sqrt{3}$

A1
to produce at least two sets of values
A1 6 allow \leq instead of $<$ and/or \geq instead of $>$

1 (i) Attempt use of product rule
Obtain $3 x^{2}(x+1)^{5}+5 x^{3}(x+1)^{4}$
[Or: (following complete expansion and differentiation term by term)
Obtain $8 x^{7}+35 x^{6}+60 x^{5}+50 x^{4}+20 x^{3}+3 x^{2} \quad$ B2 allow B1 if one term incorrect]
(ii) Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{n}$

Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$
Obtain correct $6 x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$
A1 3 or (unsimplified) equiv

2 Identify critical value $x=2$
B1
Attempt process for determining both
critical values
M1
Obtain $\frac{1}{3}$ and 2
Attempt process for solving inequality
A1
M1

Obtain $\frac{1}{3}<x<2$
A1 5

3 (i) Attempt correct process for composition
Obtain (16 and hence) 7
(ii) Attempt correct process for finding inverse

Obtain $(x-3)^{2}$
(iii) Sketch (more or less) correct $y=\mathrm{f}(x)$

Sketch (more or less) correct $y=\mathrm{f}^{-1}(x)$
State reflection in line $y=x$

M1
A1 2
M1
A1 2
B1 with 3 indicated or clearly implied on y-axis, correct curvature, no maximum point
B1 right hand half of parabola only
B1 3 or (explicit) equiv; independent of earlier marks

4 (i) Obtain integral of form $k(2 x+1)^{\frac{4}{3}}$

Obtain correct $\frac{3}{8}(2 x+1)^{\frac{4}{3}}$
Substitute limits in expression of form $(2 x+1)^{n}$
and subtract the correct way round
Obtain 30
(ii) Attempt evaluation of $k\left(y_{0}+4 y_{1}+y_{2}\right)$

Identify k as $\frac{1}{3} \times 6.5$
Obtain 29.6
[SR: (using Simpson's rule with 4 strips)
Obtain $\frac{1}{3} \times 3.25(1+4 \times \sqrt[3]{7.5}+2 \times \sqrt[3]{14}+4 \times \sqrt[3]{20.5}+3)$
and hence 29.9

M1 or equiv using substitution;
any constant k
A1 or equiv

M1 using adjusted limits if subn used
A1 4
M1 any constant k
A1
A1 3 or greater accuracy (29.554566...)

B1 or greater accuracy (29.897...)]

5 (i) State $\mathrm{e}^{-0.04 t}=0.5$
Attempt solution of equation of form $\mathrm{e}^{-0.04 t}=k$
Obtain 17
(ii) Differentiate to obtain form $k \mathrm{e}^{-0.04 t}$

Obtain (\pm) $9.6 \mathrm{e}^{-0.04 t}$
Equate attempt at first derivative to $(\pm) 2.1$ and attempt solution
Obtain 38

B1 or equiv
M1 using sound process; maybe implied
A1 3 or greater accuracy (17.328...)
*M1 constant k different from 240
A1 or (unsimplified) equiv

M1 dep *M; method maybe implied
A1 4 or greater accuracy (37.9956...)

6 (i) Obtain integral of form $k_{1} \mathrm{e}^{2 x}+k_{2} x^{2}$
Obtain correct $3 \mathrm{e}^{2 x}+\frac{1}{2} x^{2}$
Obtain $3 e^{2 a}+\frac{1}{2} a^{2}-3$
Equate definite integral to 42 and attempt rearrangement
Confirm $\quad a=\frac{1}{2} \ln \left(15-\frac{1}{6} a^{2}\right)$
(ii) Obtain correct first iterate 1.348...

Attempt correct process to find at least
2 iterates
Obtain at least 3 correct iterates
Obtain 1.344

M1 any non-zero constants k_{1}, k_{2}
A1
A1

M1 using sound processes
A1 5 AG; necessary detail required

B1
M1
A1
A1 4 answer required to exactly 3 d.p.; allow recovery after error
$[1 \rightarrow 1.34844 \rightarrow 1.34382 \rightarrow 1.34389]$

7 (i) Show correct general shape (alternating above and below x-axis)
Draw (more or less) correct sketch
(ii) Attempt solution of $\cos x=\frac{1}{3}$

Obtain 1.23 or 0.392π
Obtain 5.05 or 1.61π
(iii) Either: Obtain equation of form $\tan \theta=k$ M1

Obtain $\tan \theta=5$
Obtain two values only of form
$\theta, \theta+\pi$
Obtain 1.37 and 4.51 (or 0.437π and 1.44π)

Or: (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value
Attempt solution at least to find one value in first quadrant and one value in third
Obtain 1.37 and 4.51
(or equivs as above)

M1 with no branch reaching x-axis
A1 2 with at least one of 1 and -1 indicated or clearly implied

M1 maybe implied; or equiv
A1 or greater accuracy
A1 3 or greater accuracy and no others within $0 \leq x \leq 2 \pi$; penalise answer(s) to 2sf only once
any constant k; maybe implied
A1
M1 within $0 \leq x \leq 2 \pi$; allow degrees at this stage

A1 4 allow ± 1 in third sig fig; or greater accuracy

M1
A1 $\tan ^{2} \theta=25, \cos ^{2} \theta=\frac{1}{26}, \ldots$

A1 ignoring values in second and fourth quadrants

8 (i) Attempt use of quotient rule
Obtain $\frac{(4 \ln x+3) \frac{4}{x}-(4 \ln x-3) \frac{4}{x}}{(4 \ln x+3)^{2}}$
Confirm $\frac{24}{x(4 \ln x+3)^{2}}$
(ii) Identify $\ln x=\frac{3}{4}$

State or imply $x=\mathrm{e}^{\frac{3}{4}}$
Substitute e^{k} completely in expression for derivative
Obtain $\frac{2}{3} \mathrm{e}^{-\frac{3}{4}}$
(iii) State or imply $\int \frac{4 \pi}{x(4 \ln x+3)^{2}} \mathrm{~d} x$

Obtain integral of form $k \frac{4 \ln x-3}{4 \ln x+3}$ or $k(4 \ln x+3)^{-1}$
Substitute both limits and subtract right way round
Obtain $\frac{4}{21} \pi$

M1 allow for numerator 'wrong way round'; or equiv

A1 or equiv

A1 3 AG; necessary detail required

B1 or equiv
B1

M1 and deal with $\ln \mathrm{e}^{k}$ term
A1 $\mathbf{4}$ or exact (single term) equiv

B1
*M1 any constant k
M1 dep *M
A1 $\mathbf{4}$ or exact equiv

9 (i) Attempt use of either of $\tan (A \pm B)$ identities
Substitute $\tan 60^{\circ}=\sqrt{3}$ or $\tan ^{2} 60^{\circ}=3$
Obtain $\frac{\tan \theta+\sqrt{3}}{1-\sqrt{3} \tan \theta} \times \frac{\tan \theta-\sqrt{3}}{1+\sqrt{3} \tan \theta}$

Obtain $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}$
(ii) Use $\sec ^{2} \theta=1+\tan ^{2} \theta$

Attempt rearrangement and simplification of equation involving $\tan ^{2} \theta$
Obtain $\tan ^{4} \theta=\frac{1}{3}$
Obtain 37.2
Obtain 142.8
(iii) Attempt rearrangement of $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}=k^{2}$ to form

$$
\tan ^{2} \theta=\frac{\mathrm{f}(k)}{\mathrm{g}(k)}
$$

M1
Obtain $\tan ^{2} \theta=\frac{k^{2}+3}{1+3 k^{2}}$
Observe that RHS is positive for all k, giving one value in each quadrant

M1

B1
A1 or equiv (perhaps with $\tan 60^{\circ}$ still involved)

A1 4 AG

B1

M1 or equiv involving $\sec \theta$
A1 or equiv $\sec ^{2} \theta=1.57735$...
A1 or greater accuracy
A1 5 or greater accuracy; and no others between 0 and 180

4723 Core Mathematics 3

1 (i) Show correct process for composition of functions

Obtain (-3 and hence) -23
(ii) Either: State or imply $x^{3}+4=12$

Attempt solution of equation involving x^{3} Obtain 2

Or: Attempt expression for f^{-1}
Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$
Obtain 2

M1 numerical or algebraic; the right way round

A1 2

B1
M1 as far as $x=\ldots$
A1 3 and no other value

M1
A1
A1 (3) and no other value

2 (i) Obtain correct first iterate 2.864
Carry out correct iteration process
Obtain 2.877

B1 or greater accuracy 2.864327...; condone 2 dp here and in working
M1 to find at least 3 iterates in all
A1 3 after at least 4 steps; answer required to exactly 3 dp

$$
[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876661 \rightarrow 2.876800]
$$

(ii) State or imply $x=\sqrt[3]{31-\frac{5}{2} x}$

Attempt rearrangement of equation in x
Obtain equation $2 x^{3}+5 x-62=0$

3 (a) State correct equation involving $\cos \frac{1}{2} \alpha$

Attempt to find value of α
Obtain 151
(b) State or imply $\cot \beta=\frac{1}{\tan \beta}$

Rearrange to the form $\tan \beta=k$
Obtain 69.3
Obtain 111

B1

M1 involving cubing and grouping non-zero terms on LHS
A1 3 or equiv with integers

B1 such as $\cos \frac{1}{2} \alpha=\frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2} \alpha}=4$
or ...
M1 using correct order for the steps
A1 3 or greater accuracy; and no other values between 0 and 180

B1
M1

A1

A1 4 or greater accuracy; and no others between 0 and 180

4 (i) Obtain derivative of form $k h^{5}\left(h^{6}+16\right)^{n}$

Obtain correct $3 h^{5}\left(h^{6}+16\right)^{-\frac{1}{2}}$
Substitute to obtain 10.7
(ii) Attempt multn or divn using 8 and answer from (i)

Attempt 8 divided by answer from (i)
Obtain 0.75

M1 any constant k; any $n<\frac{1}{2}$; allow if

- 4 term retained

A1 or (unsimplified) equiv; no -4 now
A1 3 or greater accuracy or exact equiv

M1
A1 $\sqrt{ } 3$ or greater accuracy; allow 0.75 ± 0.01; following their answer from (i)

5 (a) Obtain integral of form $k(3 x+7)^{10}$
Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3}(3 x+7)^{10}$
Obtain (simplified) $\frac{1}{30}(3 x+7)^{10}+c$
(b) State $\int \pi\left(\frac{1}{2 \sqrt{x}}\right)^{2} \mathrm{~d} x$

Integrate to obtain $k \ln x$

Obtain $\frac{1}{4} \pi \ln x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4} \pi \ln 4 x$ or $\frac{1}{4} \ln 4 x$ A1
Show use of the $\log a-\log b$ property
Obtain $\frac{1}{4} \pi \ln 2$

M1 any constant k
A1 or equiv
A1 3

B1 or equiv involving x; condone no $\mathrm{d} x$
M1 any constant k involving π or not;
or equiv such as $k \ln 4 x$ or $k \ln 2 x$

M1 not dependent on earlier marks
A1 5 or similarly simplified equiv

6 (i) Either: Refer to translation and reflection
State translation by 1 in negative x-direction
State reflection in x-axis
Or: Refer to translation and reflection
State reflection in y-axis
State translation by 1 in positive x-direction
(ii) Show sketch with attempt at reflection of 'negative' part in x-axis
Show (more or less) correct sketch
(iii) Attempt correct process for finding at least one value

Obtain $1-\frac{1}{2} \sqrt{3}$
Obtain $1+\frac{1}{2} \sqrt{3}$

B1 in either order; allow clear equivs
B1 or equiv but now using correct terminology
B1 3 using correct terminology
B1 in either order; allow clear equivs
B1
B1 (3) with order reflection then translation clearly intended

M1 and curve for $0<x<1$ unchanged
A1 2 with correct curvature
M1 as far as $x=\ldots$; accept decimal equivs (degrees or radians) or expressions involving $\sin \left(\frac{1}{3} \pi\right)$
A1 or exact equiv
A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided

7 (i) Attempt use of product rule for $x \mathrm{e}^{2 x}$
Obtain $\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
Attempt use of quotient rule
Obtain unsimplified $\frac{(x+k)\left(\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}\right)-x \mathrm{e}^{2 x}}{(x+k)^{2}}$
Obtain $\frac{\mathrm{e}^{2 x}\left(2 x^{2}+2 k x+k\right)}{(x+k)^{2}}$
(ii) Attempt use of discriminant

Obtain $4 k^{2}-8 k=0$ or equiv and hence $k=2$
Attempt solution of $2 x^{2}+2 k x+k=0$

Obtain $x=-1$
Obtain $-\mathrm{e}^{-2}$

M1 obtaining $\ldots+\ldots$
A1 or equiv; maybe within QR attempt
M1 with or without product rule
A1

A1 5 AG; necessary detail required

M1 or equiv
A1
M1 using their numerical value of k or solving in terms of k using correct formula
A1
A1 5 or exact equiv

8 (i) State or imply $h=1$
Attempt calculation involving attempts at y values

Obtain $a(1+4 \times 2+2 \times 4+4 \times 8+2 \times 16+4 \times 32+64)$ A1
Obtain 91
(ii) State $\mathrm{e}^{x \ln 2}$ or $k=\ln 2$

Integrate $\mathrm{e}^{k x}$ to obtain $\frac{1}{k} \mathrm{e}^{k x}$
Obtain $\frac{1}{\ln 2}\left(\mathrm{e}^{6 \ln 2}-\mathrm{e}^{0}\right)$
Simplify to obtain $\frac{63}{\ln 2}$
(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

B1

M1 addition with each of coefficients $1,2,4$ occurring at least once; involving at least $5 y$ values any constant a
A1 4
B1 allow decimal equiv such as $\mathrm{e}^{0.69 x}$
M1 any constant k or in terms of general k
A1 or exact equiv
A1 4 allow if simplification in part (iii)

M1 provided $\ln 2$ involved other than in power of e
A1 2 AG; necessary correct detail required

9 (i) State at least one of $\cos \theta \cos 60-\sin \theta \sin 60$
and $\cos \theta \cos 30-\sin \theta \sin 30$
Attempt complete multiplication of identities of form $\pm \cos \cos \pm \sin \sin$
Use $\cos ^{2} \theta+\sin ^{2} \theta=1$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
Obtain $\sqrt{3}-2 \sin 2 \theta$
(ii) Attempt use of 22.5 in right-hand side

Obtain $\sqrt{3}-\sqrt{2}$
(iii) Obtain 10.7

Attempt correct process to find two angles
Obtain 79.3
(iv) Indicate or imply that critical values of $\sin 2 \theta$ are -1 and 1
Obtain both of $k>\sqrt{3}+2, \quad k<\sqrt{3}-2$
Obtain complete correct solution

B1

M1 with values $\frac{1}{2} \sqrt{3}, \frac{1}{2}$ involved
M1
A1 4 AG; necessary detail required

M1
A1 2 or exact equiv

B1 or greater accuracy; allow ± 0.1
M1 from values of 2θ between 0 and 180
A1 3 or greater accuracy and no others between 0 and 90 ; allow ± 0.1

M1
A1 condoning decimal equivs, $\leq \geq$ signs
A1 3 now with exact values and unambiguously stated

4723 Core Mathematics 3

8 (i) Show at least correct $\cos \theta \cos 60+\sin \theta \sin 60$ or
$\cos \theta \cos 60-\sin \theta \sin 60$
Attempt expansion of both with exact numerical values attempted
Obtain $\frac{1}{2} \sqrt{3} \sin \theta+\frac{5}{2} \cos \theta$
(ii) Attempt correct process for finding R

Attempt recognisable process for finding α
Obtain $\sqrt{7} \sin (\theta+70.9)$

B1

M1 and with $\cos 60 \neq \sin 60$
A1 or exact equiv
3
M1 whether exact or approx
M1 allowing sin / cos muddles
A1 allow 2.65 for R; allow 70.9 ± 0.1 for α
3
M1
A1 -158, -22, 202, 338, ...
M1 or several values including this
A1 or greater accuracy and no other
Obtain 131
[SC for solutions with no working shown:

9 (i) Attempt use of quotient rule
Obtain $\frac{75-15 x^{2}}{\left(x^{2}+5\right)^{2}}$
Equate attempt at first derivative to zero and rearrange to solvable form
Obtain $x=\sqrt{5}$ or 2.24
Recognise range as values less than y-coord of st pt
Obtain $0 \leq y \leq \frac{3}{2} \sqrt{5}$
*M1 or equiv; allow u / v muddles
A1 or (unsimplified) equiv; this M1A1 available at any stage of question
$\mathbf{M 1} \quad \operatorname{dep}{ }^{*} \mathbf{M}$
A1 or greater accuracy
M1 allowing < here
A1 any notation; with \leq now; any exact equiv

B1 $\sqrt{ }$ following their x-coord of st pt; condone answer $x \geq \sqrt{5}$ but not inequality with k
(iii) Equate attempt at first derivative to -1 and attempt simplification
Obtain $x^{4}-5 x^{2}+100=0$
Attempt evaluation of discriminant or equiv
Obtain -375 or equiv and conclude appropriately
*M1 and dependent on first \mathbf{M} in part (i)
A1 or equiv involving 3 non-zero terms
M1 dep *M

4723 Core Mathematics 3

1 (i)	Obtain integral of form $\mathrm{ke}^{-2 x}$ Obtain $-4 \mathrm{e}^{-2 x}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	any constant k different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4 x+5)^{7}$ Obtain $\frac{1}{28}(4 x+5)^{7}$ Include $\ldots+c$ at least once	$\begin{array}{lr} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } & \\ & 5 \end{array}$	any constant k in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4+4 \ln 6+2 \ln 8+4 \ln 10+\ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	M1 A1 A1 A1 4	with coeffs 1,4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164...)
(ii)	State 162.7 or 163	$\begin{array}{r} \mathrm{B} 1 \sqrt{ } 1 \\ \boxed{5} \end{array}$	following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan ^{2} \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain 2 $\left(\sec ^{2} \theta-1\right)-\sec \theta$	M1 B1 $\text { A1 } 3$	using $\pm \sec ^{2} \theta \pm 1$; or equiv or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain $60^{\circ}, 131.8^{\circ}$ Obtain $60^{\circ}, 131.8^{\circ}, 228.2^{\circ}, 300^{\circ}$	$\begin{array}{lr} \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ & 7 \end{array}$	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°

4 (i)	Obtain derivative of form $k x\left(4 x^{2}+1\right)^{4}$ Obtain $40 x\left(4 x^{2}+1\right)^{4}$ State $x=0$	M1 A1 A1 $\sqrt{ } 3$	any constant k or (unsimplified) equiv and no other; following their derivative of form $k x\left(4 x^{2}+1\right)^{4}$
(ii)	Attempt use of quotient rule Obtain $\frac{2 x \ln x-x^{2} \cdot \frac{1}{x}}{(\ln x)^{2}}$	M1 A1	or equiv or equiv
	Equate to zero and attempt solution	M1	as far as solution involving e
	Obtain $\mathrm{e}^{\frac{1}{2}}$	A1 4	or exact equiv; and no other; allow from \pm (correct numerator of derivative)

(i) Refer to stretch and translation

State stretch, factor $\frac{1}{k}$, in x direction

M1 in either order; allow here informal terms
A1 or equiv; now with correct terminology

State translation in negative y direction by a1 $\mathbf{3}$ or equiv; now with correct terminology [SC: If M0 but one transformation completely correct - B1]
(ii) Show attempt to reflect negative part
in x-axis
Show correct sketch

M1 ignoring curvature
A1 2 with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii) Attempt method with $x=0$ to find value of a M1 ... other than (or in addition to) value -12

Obtain $a=14 \quad$ A1
and nothing else
Attempt to solve for $k \quad$ M1 using any numerical a with sound process
Obtain $k=3$

8 (i) Attempt to express x or x^{2} in terms of y
Obtain $x^{2}=\frac{1296}{(y+3)^{4}}$
Obtain integral of form $k(y+3)^{-3}$
Obtain $-432 \pi(y+3)^{-3}$ or $-432(y+3)^{-3}$
Attempt evaluation using limits 0 and p

Confirm $16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$

M1
A1 or (unsimplified) equiv
M1 any constant k
A1 or (unsimplified) equiv
M1 for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round

A1 6 AG; necessary detail required, including appearance of π prior to final line
(ii) State or obtain $\frac{\mathrm{d} V}{\mathrm{~d} p}=1296 \pi(p+3)^{-4} \quad$ B1 \quad or equiv; perhaps involving y

Multiply $\frac{\mathrm{d} p}{\mathrm{~d} t}$ and attempt at $\frac{\mathrm{d} V}{\mathrm{~d} p} \quad * \mathrm{M} 1 \quad$ algebraic or numerical
Substitute $p=9$ and attempt evaluation
Obtain $\frac{1}{4} \pi$ or 0.785

M1 dep *M
A1 $\mathbf{4}$ or greater accuracy
10

9 (i) State $\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta$
B1
Use at least one of $\cos 2 \theta=2 \cos ^{2} \theta-1$
and $\sin 2 \theta=2 \sin \theta \cos \theta$
B1
Attempt to express in terms of $\cos \theta$ only M
using correct identities for $\cos 2 \theta, \sin 2 \theta$ and $\sin ^{2} \theta$

Obtain $4 \cos ^{3} \theta-3 \cos \theta$
A1 4 AG; necessary detail required
(ii) Either: State or imply $\cos 6 \theta=2 \cos ^{2} 3 \theta-1$ B1

Use expression for $\cos 3 \theta$ and
attempt expansion M1
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$
Or: \quad State $\cos 6 \theta=4 \cos ^{3} 2 \theta-3 \cos 2 \theta$
Express $\cos 2 \theta$ in terms of $\cos \theta$
and attempt expansion
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$

M1 for expression of form $\pm 2 \cos ^{2} 3 \theta \pm 1$
A1 3 AG; necessary detail required
B1 maybe implied

M1 for expression of form $\pm 2 \cos ^{2} \theta \pm 1$
A1 (3) AG; necessary detail required
(iii) Substitute for $\cos 6 \theta$

Obtain $32 c^{6}-48 c^{4}=0$
Attempt solution for c of equation
Obtain $c^{2}=\frac{3}{2}$ and observe no solutions
Obtain $c=0$, give at least three specific angles and conclude odd multiples of 90
*M1 with simplification attempted
A1 or equiv
M1 dep *M
A1 or equiv; correct work only

A1 5 AG; or equiv; necessary detail required; correct work only

4723 Core Mathematics 3

5 (i) Either: Show correct process for comp'n
Obtain $y=3(3 x+7)-2$
Obtain $x=-\frac{19}{9}$

M1 correct way round and in terms of x A1 or equiv
A1 3 or exact equiv; condone absence of $y=0$

Or: Use $\mathrm{fg}(x)=0$ to obtain $\mathrm{g}(x)=\frac{2}{3}$
Attempt solution of $\mathrm{g}(x)=\frac{2}{3}$
Obtain $x=-\frac{19}{9}$ B1

A1 (3) or exact equiv; condone absence of $y=0$
(ii) Attempt formation of one of the equations

$$
3 x+7=\frac{x-7}{3} \text { or } 3 x+7=x \text { or } \frac{x-7}{3}=x \quad \text { M1 } \quad \text { or equiv }
$$

Obtain $x=-\frac{7}{2} \quad$ A1 or equiv
Obtain $y=-\frac{7}{2} \quad$ A1 $\sqrt{ } 3$ or equiv; following their value of x
(iii) Attempt solution of modulus equation

M1 squaring both sides to obtain 3-term quadratics or forming linear equation with signs of $3 x$ different on each side
Obtain $-12 x+4=42 x+49$ or $3 x-2=-3 x-7$
Obtain $x=-\frac{5}{6}$
Obtain $y=\frac{9}{2}$
A1 or equiv
A1 or exact equiv; as final answer
A1 4 or equiv; and no other pair of answers
10
6 (i) Obtain derivative $k\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \mathrm{f}(y)$ M1 any constant k; any linear function for f
Obtain $\frac{1}{2}(10-4 y)\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \quad$ A1 2 or equiv
(ii) Either: Sub'te $y=3$ in expression for $\frac{\mathrm{d} x}{\mathrm{~d} y} \quad * \mathrm{M} 1$

Take reciprocal of expression/value *M1
Obtain -7 for gradient of tangent A1
Attempt equation of tangent
Obtain $y=-7 x+52$

M1
A1 5 and no second equation
$\underline{\text { Or: }}$: Sub'te $y=3$ in expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$
M1
Attempt formation of eq'n $x=m^{\prime} y+c \quad$ M1
Obtain $x-7=-\frac{1}{7}(y-3)$
A1
Attempt rearrangement to required form M1
Obtain $y=-7 x+52$
A1 (5) and no second equation 7

(b) Attempt use of product rule *M1

Obtain $m \mathrm{e}^{m x}\left(x^{2}+m x\right)+\mathrm{e}^{m x}(2 x+m) \quad$ A1
A1 or equiv

Equate to zero and either factorise with factor $\mathrm{e}^{m x}$ or divide through by $\mathrm{e}^{m x}$

M1 dep *M
Obtain $m x^{2}+\left(m^{2}+2\right) x+m=0$ or equiv and observe that $\mathrm{e}^{m x}$ cannot be zero
using correct $b^{2}-4 a c$ with their a, b, c

Observe that this is positive for all m and hence two roots

A1 7 or equiv; AG

4723 Core Mathematics 3

$1 \quad$ Obtain integral of form $k(2 x-7)^{-1}$
Obtain correct $-5(2 x-7)^{-1}$
Include $\ldots+c$

M1 any constant k
A1 or equiv
B1 $\mathbf{3}$ at least once; following any integral 3

5 (i) Obtain derivative of form $k x\left(x^{2}+1\right)^{7}$
Obtain $16 x\left(x^{2}+1\right)^{7}$
Equate first derivative to 0 and confirm $x=0$ or substitute $x=0$ and verify first derivative zero
Refer, in some way, to $x^{2}+1=0$ having no root

M1 any constant k
A1 or equiv

M1 AG; allow for deriv of form $k x\left(x^{2}+1\right)^{7}$
A1 4 or equiv
*M1 obtaining $\ldots+\ldots$ form
A1 $\sqrt{ }$ follow their $k x\left(x^{2}+1\right)^{7}$
A1 $\sqrt{ }$ follow their $k x\left(x^{2}+1\right)^{7}$; or unsimplified equiv
M1 dep *M
A1 5 from second derivative which is correct at some point

6 Integrate $\mathrm{e}^{3 x}$ to obtain $\frac{1}{3} \mathrm{e}^{3 x}$ or $\mathrm{e}^{-\frac{1}{2} x}$ to obtain $-2 \mathrm{e}^{-\frac{1}{2} x}$
Obtain indefinite integral of form $m_{1} \mathrm{e}^{3 x}+m_{2} \mathrm{e}^{-\frac{1}{2} x}$
Obtain correct $\frac{1}{3} k \mathrm{e}^{3 x}-2(k-2) \mathrm{e}^{-\frac{1}{2} x}$

Obtain $\mathrm{e}^{3 \ln 4}=64$ or $\mathrm{e}^{-\frac{1}{2} \ln 4}=\frac{1}{2}$
Apply limits and equate to 185
Obtain $\frac{64}{3} k-(k-2)-\frac{1}{3} k+2(k-2)=185$
Obtain $\frac{17}{2}$

B1 or both
M1 any constants m_{1} and m_{2}
A1 or equiv

B1 or both
M1 including substitution of lower limit
A1 or equiv
A1 7 or equiv 7

7 (a) Either: State or imply either $\frac{\mathrm{d} A}{\mathrm{~d} r}=2 \pi r$ or $\frac{\mathrm{d} A}{\mathrm{~d} t}=250 \quad$ B1 \quad or both Attempt manipulation of derivatives to find $\frac{\mathrm{d} r}{\mathrm{~d} t}$
Obtain correct $\frac{250}{2 \pi r}$
Obtain 1.6
Or: Attempt to express r in terms of t
Obtain $r=\sqrt{\frac{250 t}{\pi}}$
Differentiate $k t^{\frac{1}{2}}$ to produce $\frac{1}{2} k t^{-\frac{1}{2}}$
Substitute $t=7.6$ to obtain 1.6

A1 or equiv
A1 4 or equiv; allow greater accuracy
M1 using $A=250 t$
A1 or equiv
M1 any constant k
A1 (4) allow greater accuracy
(b) State $\frac{\mathrm{d} m}{\mathrm{~d} t}=-150 \mathrm{ke}^{-k t}$

Equate to $(\pm) 3$ and attempt value for t
Obtain $-\frac{1}{k} \ln \left(\frac{1}{50 k}\right)$ or $\frac{1}{k} \ln (50 k)$ or $\frac{\ln 50+\ln k}{k}$

B1
M1 using valid process; condone sign confusion
A1 3 or equiv but with correct treatment of signs 7

8 (i) State scale factor is $\sqrt{2}$
State translation is in negative x-direction ...
... by $\frac{3}{2}$ units

B1 allow 1.4
B1 or clear equiv
B1 3
(ii) Draw (more or less) correct sketch of $y=\sqrt{2 x+3}$

Draw (more or less) correct sketch of $y=\frac{N}{x^{3}}$
Indicate one point of intersection
B1 'starting' at point on negative x-axis
[SC: if neither sketch complete or correct but diagram correct for both in first quadrant
(iii) (a) Substitute 1.9037 into $x=N^{\frac{1}{3}}(2 x+3)^{-\frac{1}{6}}$

Obtain 18 or value rounding to 18
(b) State or imply $2.6282=N^{\frac{1}{3}}(2 \times 2.6022+3)^{-\frac{1}{6}}$

Attempt solution for N
Obtain 52

M1 or into equation $\sqrt{2 x+3}=\frac{N}{x^{3}}$; or equiv
A1 2 with no error seen

B1
M1 using correct process
A1 3 concluding with integer value 11

9 (i) Identify $\tan 55^{\circ}$ as $\tan \left(45^{\circ}+10^{\circ}\right)$
Use correct angle sum formula for $\tan (A+B)$
Obtain $\frac{1+p}{1-p}$

B1 or equiv
M1 or equiv
A1 3 with $\tan 45^{\circ}$ replaced by 1
(ii) Either: Attempt use of identity for $\tan 2 A$

Obtain $p=\frac{2 t}{1-t^{2}}$
Attempt solution for t of quadratic equation
Obtain $\frac{-1+\sqrt{1+p^{2}}}{p}$

Or (1): Attempt expansion of $\tan \left(60^{\circ}-55^{\circ}\right)$
Obtain $\frac{\sqrt{3}-\frac{1+p}{1-p}}{1+\sqrt{3} \frac{1+p}{1-p}}$
Attempt simplification to remove
denominators
Obtain $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$
*M1 linking 10° and 5°
A1
M1 dep *M
A1 4 or equiv; and no second expression
*M1
A1 $\sqrt{ }$ follow their answer from (i)

M1 dep *M
A1 (4) or equiv

Or (2): State or imply $\tan 15^{\circ}=2-\sqrt{3}$
Attempt expansion of $\tan \left(15^{\circ}-10^{\circ}\right)$
Obtain $\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$

Or (3): State or imply $\tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}$
Attempt expansion of $\tan \left(15^{\circ}-10^{\circ}\right)$
Obtain $\frac{\sqrt{3}-1-p \sqrt{3}-p}{\sqrt{3}+1+p \sqrt{3}-p}$

Or (4): Attempt expansion of $\tan \left(10^{\circ}-5^{\circ}\right)$
Obtain $t=\frac{p-t}{1+p t}$
Attempt solution for t of quadratic equation
Obtain $\frac{-2+\sqrt{4+4 p^{2}}}{2 p}$

B1
M1 with exact attempt for $\tan 15^{\circ}$
A2 (4)

B1 or exact equiv
M1 with exact attempt for $\tan 15^{\circ}$
A2 (4) or equiv
${ }^{*}$ M1
A1
M1 dep *M
A1 (4) or equiv; and no second
expression
(iii) Attempt expansion of both sides

M1
Obtain $3 \sin \theta \cos 10^{\circ}+3 \cos \theta \sin 10^{\circ}=$ $7 \cos \theta \cos 10^{\circ}+7 \sin \theta \sin 10^{\circ}$
Attempt division throughout by $\cos \theta \cos 10^{\circ}$
Obtain $3 t+3 p=7+7 p t$
Obtain $\frac{3 p-7}{7 p-3}$

A1 or equiv
M1 or by $\cos \theta\left(\right.$ or $\left.\cos 10^{\circ}\right)$ only
A1 or equiv
A1 5 or equiv
12

1 (i) Attempt use of product rule
M1 producing ... $+\ldots$ form
Obtain $3 x^{2} \mathrm{e}^{2 x}+2 x^{3} \mathrm{e}^{2 x}$
A1 2 or equiv
(ii) Attempt use of chain rule to produce $\frac{k x}{3+2 x^{2}}$ form

M1 any constant k
Obtain $\frac{4 x}{3+2 x^{2}}$
A1 2
(iii) Attempt use of quotient rule

M1 or equiv; condone u / v confusions
Obtain $\frac{2 x+1-2 x}{(2 x+1)^{2}}$ or $(2 x+1)^{-1}-2 x(2 x+1)^{-2}$
A1 2 or (unsimplified) equiv
[If $\ldots+c$ included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of $\ldots+c$.]

6

2 (i) Obtain one of $\pm \ln (\pm x \pm 4)$
M1
Obtain correct equation $y=-\ln (x-4)$
A1 2 or equiv; condone use of modulus signs instead of brackets
(ii) State, in any order, S, S and T

State T, then S, then S
M1 or equiv such as S^{2}, T or $2 S, T$
A1 2 or equiv (note that S, S, T^{9} and S, T^{3}, S are alternative correct answers)

4

3 (i) Use $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Attempt to express equation in terms of $\sin \theta$
Obtain or clearly imply $6 \sin ^{2} \theta-11 \sin \theta-10=0$
M1 using $\cos 2 \theta= \pm 1 \pm 2 \sin ^{2} \theta$ or equiv
A1 3 or $-6 \sin ^{2} \theta+11 \sin \theta+10=0$
(ii) Attempt solution to obtain at least one value of $\sin \theta$

Obtain -41.8
Obtain -138
M1 should be $s=-\frac{2}{3}, \frac{5}{2}$
A1 allow -42 or greater accuracy
A1 3 or greater accuracy; and no others between -180 and 180
[Answer(s) only: award 0 out of 3.]

4 (i) Either: Integrate to obtain $k \ln x$
Use at least one relevant logarithm property
Obtain $k \ln 3=\ln 81$ and hence $k=4$

B1
M1
A1 3 AG; accurate work required

Or 1: (where solution involves no use of a logarithm property)

Integrate to obtain $k \ln x$
B1
Obtain correct explicit expression for k and conclude $k=4$ with no error seen

B2 3 AG; e.g. $k=\frac{\ln 81}{\ln 6-\ln 2}=4$
Or 2: (where solution involves verification of result by initial substitution of 4 for k) Integrate to obtain $4 \ln x \quad$ B1
Use at least one relevant logarithm property M1
Obtain $\ln 81$ legitimately with no error seen
A1 3 AG; accurate work required
(ii) State volume involves $\int \pi\left(\frac{4}{x}\right)^{2} \mathrm{~d} x$

Obtain integral of form $k_{1} x^{-1}$
Use correct process for finding volume produced from S

Obtain $16 \pi-\frac{16}{3} \pi$ and hence $\frac{32}{3} \pi$

B1 possibly implied
M1 any constant k_{1} including π or not
M1 $\quad \int\left(k_{2} 2^{2}-k_{3} y^{2}\right) \mathrm{d} x$, including π or not with correct limits indicated; or equiv
A1 4 or exact equiv
7

5 (i) Attempt process for finding both critical values

Obtain -4
Obtain $\frac{2}{3}$
Attempt process for solving inequality
M1 squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities

A1
A1
M1 table, sketch, ...; needs two critical values; implied by plausible answer
Obtain $-4 \leq x \leq \frac{2}{3}$
A1 5 with \leq and not $<$
(ii) Use correct process to find value of $|x+2|$ using any value M1 ... whether part of answer to (i) or not Obtain $2 \frac{2}{3}$ or $\frac{8}{3}$ A1 2 dependent on 5 marks awarded in part (i) 7

6 (i) Attempt calculations involving 1.0 and 1.1
Obtain -0.57 and 0.76
Refer to sign change (or equiv for rearranged eqn)
(ii) Obtain correct first iterate

Carry out iteration process
Obtain at least 3 correct iterates
Obtain 1.05083

M1 using radians
A1 or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)
A1 3 AG ; following correct work only
B1 using value x_{1} such that $1.0 \leq x_{1} \leq 1.1$
M1 obtaining at least 3 iterates in all so far
A1 showing at least 3 dp
A1 4 answer required to exactly 5 d.p.
$[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.050826 \rightarrow 1.050827$;
$1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827$;
$1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827]$
(iii) State or imply $\sec ^{2} 2 x=1+\tan ^{2} 2 x$

Relate to earlier equation
Deduce $2 x=1.05083$ and hence 0.525
[SC: Rearrange to obtain $x=\frac{1}{2} \cos ^{-1}(2 x+3)^{-\frac{1}{2}}$
Use iterative process to obtain 0.525

B1
M1 by halving or doubling answer to (ii) or carrying out equivalent iteration process
A1 $\sqrt{ } 3$ following their answer to (ii); or greater accuracy

B1
B1 2 or greater accuracy]
10

7

Differentiate to obtain $k_{1}(3 x-1)^{3}$
Obtain correct $12(3 x-1)^{3}$
Substitute 1 to obtain 96
Attempt to find x-coordinate of Q
Obtain $\frac{5}{6}$

Integrate to obtain $k_{2}(3 x-1)^{5}$
Obtain correct $\frac{1}{15}(3 x-1)^{5}$
Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$
Attempt to find shaded area by correct process
Obtain ($\frac{32}{15}-\frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$

M1 any constant k_{1}
A1 or (unsimplified) equiv
A1

A1 or exact equiv

M1 any constant k_{2}
A1 or (unsimplified) equiv
A1
M1 integral - triangle or equiv
A1 or equiv
10

8 (i) Obtain $R=3 \sqrt{2}$ or $R=\sqrt{18}$ or $R=4.24$
Attempt to find value of α
Obtain $\frac{1}{4} \pi$ or 0.785

B1 or equiv
M1 condone sin/cos muddles and degrees
A1 3 in radians now
(ii) a Equate $x-\alpha$ to $\frac{1}{2} \pi$ or attempt solution
of $3 \cos x+3 \sin x=0$
Obtain $\frac{3}{4} \pi$

M1 condone degrees here
A1 2 or $\ldots,-\frac{5}{4} \pi,-\frac{1}{4} \pi, \frac{7}{4} \pi, \ldots$; in radians now
b Attempt correct process to find value of $3 x-\alpha$
Obtain at least one correct exact value of $3 x-\alpha$
Attempt at least one positive value of x
Obtain $\frac{1}{36} \pi$
*M1 with attempt at rearranging $\mathrm{T}(3 x)=\frac{8}{9} \sqrt{6}$
A1 $\pm \frac{1}{6} \pi, \pm \frac{11}{6} \pi, \ldots$
M1 dep *M
A1 4

9 (i) Attempt to find x-coord of staty point or complete square M

Obtain $\left(\frac{3}{2},-9\right)$ or $4\left(x-\frac{3}{2}\right)^{2}-9$ or -9
State $\mathrm{f}(\mathrm{x}) \geq-9$

M1
A1 or equiv
A1 3 using any notation; with \geq

B1 not $1-1$, f is many-one, ... ; maybe implied if attempt is specific to this f
B1 2 AG; (more or less) correct sketch; correct relevant calculations, ...
(iii) Either: Attempt to find expression for g^{-1}

Obtain $\frac{1}{a}(x-b)$
Compare $\frac{1}{a}(x-b)$ and $a x+b$
*M1 or equiv
A1 or equiv
M1 dep ${ }^{*}$ M; by equating either coefficients of x or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
A1 4 AG ; necessary detail required; or equiv

Obtain at least $-\frac{b}{a}=b$ and hence $a=-1$
[SC1: first two steps as above, then substitute $a=-1$: max possible M1A1B1]
[SC2: substitute $a=-1$ at start: Attempt to find inverse M1 Obtain $-x+b$ and conclude A1 2]
Or: State or imply that $y=\mathrm{g}^{-1}(x)$ is reflection
of $y=\mathrm{g}(x)$ in line $y=x$
B1
State that line unchanged by this reflection is perpendicular to $y=x$

M2
Conclude that a is -1
A1 4
(iv) State or imply that $\operatorname{gf}(x)=-\left(4 x^{2}-12 x\right)+b$

Attempt use of discriminant or relate to range of f
Obtain $64+16 b<0$ or $9+b<5$
B1

Obtain $b<-4$
or equiv
A1 4
13

1

Either:	Obtain $\frac{1}{3} a$	B1
	Attempt solution of linear eqn	M1

Obtain $-3 a$
Or: Obtain $9 x^{2}+24 a x+16 a^{2}=25 a^{2}$
Attempt solution of 3-term quad eqn

Obtain $-3 a$ and $\frac{1}{3} a$

B1
condone $|x|=\frac{1}{3} a$
with signs of $3 x$ and $5 a$ different; allow M1 only if a given particular value and no recovery occurs; allow M1 only if a in terms of x attempted; allow M1 only if double inequality attempted but with no recovery to state actual values of x
A1 3 as final answer
B1
M1 as far as substitution into correct quadratic formula or correct factorisation of their quadratic; allow M1 only if a given particular value
A1 (3) or equivs; as final answers; and no others 3

2 Draw graph showing reflection in a
horizontal axis
Draw graph showing translation

Draw (more or less) correct graph which must at least reach the negative x-axis, if not cross it, at left end of curve

M1 parallel to x-axis, in either direction; independent of first M1; not earned if curve still passes through O but ignore other coordinates given at this stage

A1 but ignoring no or wrong stretch in y-dir'n; condone graph existing only for $x<0$; consider shape of curve and ignore coordinates given
State $(-5,24)$ and $(-3,0)$ wherever located B1 4 or clearly implied by sketch; allow for coordinates whatever sketch looks like; allow if in solution with no sketch
4

3
Either: State or imply $8 \pi r$ as derivative
B1 or equiv
Attempt to connect 12 and their derivative

M1 numerical or algebraic; using multiplication or division
Obtain $8 \pi \times 150 \times 12$ and hence 45000 or 14400π or 14000π

Or: Use $r=12 t$ to show $S=576 \pi t^{2} \quad$ B1
Attempt $\frac{\mathrm{d} S}{\mathrm{~d} t}$ and substitute for t M1

Obtain $1152 \pi \times \frac{150}{12}$ and hence
45000 or 14400π or 14000π
A1 (3) or equiv; or greater accuracy (45239); condone absence of units or use of wrong units

4 (i) Obtain $R=25$

Obtain 16.3°

B1 allow $\sqrt{625}$ or value rounding to 25
M1 implied by correct answer or its complement; allow sin/cos muddles; allow use of radians for this mark; condone $\sin \alpha=7, \cos \alpha=24$ in the working
A1 3 or greater accuracy $16.260 \ldots$; must be degrees now; allow 16° here
(ii) Show correct process for finding one answer M1 Obtain (28.69-16.26 and hence) 12.4° A1

Show correct process for finding second answer
Obtain (151.31-16.26 and hence) 135° or 135.1°
even if leading to answer outside 0 to 360 or greater accuracy $12.425 \ldots$ or anything rounding to 12.4

M1 even if further incorrect answers produced
A1 4 or greater accuracy $135.054 \ldots$; and no other between 0 and 360
[SC: No working shown and 2 correct angles stated - B1 only in part (ii)]
\square
$5 \quad$ Integrate to obtain form $k(3 x-2)^{\frac{1}{2}}$

Obtain correct $4(3 x-2)^{\frac{1}{2}}$
Apply limits and attempt solution for a

Obtain $a=9$

State or imply formula $\int \frac{36 \pi}{3 x-2} \mathrm{~d} x$

Integrate to obtain form $k \ln (3 x-2)$

Obtain $12 \pi \ln (3 x-2)$ or $12 \ln (3 x-2)$
Apply limits the correct way round
Obtain $12 \pi \ln 25$ (or $24 \pi \ln 5$)

M1 any non-zero constant k; or equiv involving substitution
or (unsimplified) equiv such as $\frac{6(3 x-2)^{\frac{1}{2}}}{3 \times \frac{1}{2}}$
assuming integral of form $k(3 x-2)^{n}$; taking solution as far as removal of root; with subtraction the right way round; if sub'n used, limits must be appropriate
(this answer written down with no working scores $0 / 4$ so far but all subsequent marks are available)

B1 or (unsimplified) equiv; condone absence of $\mathrm{d} x$; allow B1 retroactively if π absent here but inserted later
*M1 any constant k including π or not; condone absence of brackets
A1 $\sqrt{ }$ following their integral of form $\int \frac{k}{3 x-2} \mathrm{~d} x$
M1 dep *M; use of limit 1 is implied by absence of second term; allow use of limit a
A1 9 or exact equiv but not with $\ln 1$ remaining; condone answers such as $\pi 12 \ln 25$ and $12 \ln 25 \pi$

6 (i) Attempt use of quotient rule

Obtain $\frac{3\left(x^{3}-4 x^{2}+2\right)-(3 x+4)\left(3 x^{2}-8 x\right)}{\left(x^{3}-4 x^{2}+2\right)^{2}}$

Equate numerator to 0 and attempt simplification

Obtain $-6 x^{3}+32 x+6=0$ or equiv and hence $x=\sqrt[3]{\frac{16}{3} x+1}$

M1 or equiv; allow numerator wrong way round but needs minus sign in numerator; for M1 condone 'minor' errors such as sign slips, absence of square in denominator, and absence of some brackets
or equiv; allow A1 if brackets absent from
$3 x+4$ term or from $3 x^{2}-8 x$ term but not from both

M1 at least as far as removing brackets, condoning sign or coeff slips; or equiv

A1 4 AG; necessary detail needed (i.e. at least one intermediate step) and following first derivative with correct numerator
(ii) Obtain correct first iterate having used
initial value 2.4

Apply iterative process

Obtain at least 3 correct iterates from their starting point
Obtain 2.398
Obtain -1.552

B1 showing at least 3 dp (2.398 or 2.399 or greater accuracy $2.39861 \ldots$...)
M1 to obtain at least 3 iterates in all; implied by plausible, converging sequence of values; having started with any initial non-negative value

A1 allowing recovery after error
A1 value required to exactly 3 dp
A1 5 value required to exactly 3 dp ; allow if apparently obtained by substitution of 2.4; answers only with no iterates shown gets $0 / 5$

$$
[2.4 \rightarrow 2.3986103 \rightarrow 2.3981808 \rightarrow 2.3980480]
$$

7 (i) State $\ln \left(x^{2}+8\right)=8$
Attempt solution involving e^{8}
Obtain $\sqrt{\mathrm{e}^{8}-8}$
(ii) State f only

State e^{x} or e^{y}
Indicate domain is all real numbers

B1 or equiv such as $x^{2}+8=\mathrm{e}^{8}$
M1 by valid (exact) method at least as
far as $x^{2}=\ldots$
A1 3 or exact equiv; and no other answer
B1
B1 or equiv; allow if g , or f and g , chosen
B1 3 however expressed
(iii) Attempt use of chain rule

Obtain $\frac{2 \ln x}{x}$
Obtain $6 \mathrm{e}^{-3}$
(iv) Attempt evaluation using y attempts

Obn $k(\ln 24+4 \ln 12+2 \ln 8+4 \ln 12+\ln 24)$ A1
Use $k=\frac{2}{3}$ and obtain 20.3
A1 3 or greater accuracy (20.26...) but must round to 20.3
[Note that use of Simpson's rule between 0 and 4 with two strips, coeffs $1,4,1$, followed by doubling of result is equiv;
SC: Use of Simpson's rule between 0 and 4 with four strips followed by doubling of result allow $3 / 3$ - answer is 20.2 (20.2327...)]

8 (a) (i) Draw at least two correctly shaped
branches, one for $y>0$, one for $y<0$ M1
Draw four correct branches
Draw (more or less) correct graph
otherwise located anywhere including $x<0$ now (more or less) correctly located;
with some indication of horiz scale (perhaps only 4π indicated); with asymptotic behaviour shown (but not too fussy about branch drifting slightly away from asymptotic value nor about branch touching asymptote) but branches must not obviously cross asymptotic value; with -1 and 1 shown (or implied by presence of sine curve or by presence of only one of them on a reasonably accurate sketch); no need for vertical (dotted) lines drawn to indicate asymptotic values
(ii) State expression of form $k \pi+\alpha$ or

$$
\begin{array}{ll}
k \pi-\alpha \text { or } \alpha=k \pi+\beta \text { or } \alpha=k \pi-\beta & \text { M1 } \\
\\
\text { State } 3 \pi-\alpha & \text { A1 } 2 \text { or unsimplified equiv } \\
\text { degrees used }
\end{array}
$$

(b) (i) State $\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

B1 $\mathbf{1}$ or equiv such as $\frac{t+t}{1-t \times t}$ or $\frac{2 \tan A}{1-\tan ^{2} A}$
(ii) State or imply $\tan \phi=\frac{1}{4}$

Attempt to evaluate $\tan 2 \phi$ or $\cot 2 \phi \quad$ M1

Obtain $\tan 2 \phi=\frac{8}{15}$ or $\cot 2 \phi=\frac{15}{8}$
Attempt to evaluate value of $\tan 4 \phi$

Obtain $\frac{240}{161}$
Obtain final answer $\frac{225}{322}$

B1 or equiv such as $\frac{1}{\tan \phi}=4$
perhaps within attempt at complete expression but using correct identity or (unsimplified) equiv; may be implied
perhaps within attempt at complete expression; condone only minor slip(s) in use of relevant identity
A1 or (unsimplified) exact equiv; may be implied
A1 6 or exact equiv
[SC - (use of calculator and little or no working)
State or imply $\tan \phi=\frac{1}{4} \quad$ B1; Obtain $\tan 2 \phi=\frac{8}{15} \quad$ B1; Obtain $\frac{225}{322} \quad$ B1 (max 3/6)
State or imply $\tan \phi=\frac{1}{4} \quad$ B1; Obtain $\frac{225}{322} \quad$ B2 (max 3/6)

9 (i) (a) Differentiate to obtain $k_{1} \mathrm{e}^{2 x}+k_{2} \mathrm{e}^{-2 x}$

Obtain $2 \mathrm{e}^{2 x}+6 \mathrm{e}^{-2 x}$
Refer to $\mathrm{e}^{2 x}>0$ and $\mathrm{e}^{-2 x}>0$ or to more general comment about exponential functions

M1 any constants k_{1} and k_{2} but derivative must be different from $\mathrm{f}(x)$; condone presence of $+c$
A1 or unsimplified equiv; no $+c$ now

A1 3 or equiv (which might be sketch of $y=\mathrm{f}(x)$ with comment that gradient is positive or might be sketch of $y=\mathrm{f}^{\prime}(x)$ with comment that $y>0$; AG
(b) Differentiate to obtain $k_{3} \mathrm{e}^{2 x}+k_{4} \mathrm{e}^{-2 x}$

Obtain $4 \mathrm{e}^{2 x}-12 \mathrm{e}^{-2 x}$
Attempt solution of $\mathrm{f}^{\prime \prime}(x)>0$ or of $\mathrm{f}(x)>0$ or of corresponding eqn
Obtain $x>\frac{1}{4} \ln 3$
Confirm both give same result
any constants k_{3} and k_{4} but second derivative must be different from their first derivative; condone presence of $+c$
A1 or unsimplified equiv; no $+c$ now

M1 at least as far as term involving $\mathrm{e}^{4 x}$ or $\mathrm{e}^{-4 x}$
A1
B1 5 AG; necessary detail needed; either by solving the other or by observing that same inequality involved (just noting that $\mathrm{f}^{\prime \prime}(x)=4 \mathrm{f}(x)$ is sufficient)
(ii) Differentiate to obtain $2 \mathrm{e}^{2 x}-2 \mathrm{ke}^{-2 x}$

Attempt to find x-coordinate of stationary pt M1
Obtain $\mathrm{e}^{4 x}=k$ and hence $\frac{1}{4} \ln k$ or equiv A 1
Substitute and attempt simplification

Obtain $g(x) \geq 2 \sqrt{k}$ or $y \geq 2 \sqrt{k}$
or unsimplified equiv
equating to 0 and reaching $\mathrm{e}^{4 x}=\ldots$ or equiv or equiv such as $\mathrm{e}^{2 x}=\sqrt{k}$
using valid processes but allow if only limited progress [note that question can be successfully concluded (without actually finding x) by substitution of $\mathrm{e}^{2 x}=\sqrt{k}$ and $\left.\mathrm{e}^{-2 x}=\frac{1}{\sqrt{k}}\right]$
A1 5 or similarly simplified equiv with \geq not $>$ 13

1 (i) Obtain integral of form $\mathrm{ke}^{2 x+1}$

Obtain correct $3 \mathrm{e}^{2 x+1}$
(ii) Obtain integral of form $k_{1} \ln (2 x+1)$

Obtain correct $5 \ln (2 x+1)$

Include $\ldots+c$ at least once

M1 any non-zero constant k different from 6; using substitution $u=2 x+1$ to obtain ke^{u} earns M1 (but answer to be in terms of x)
A1 or equiv such as $\frac{6}{2} \mathrm{e}^{2 x+1}$
M1 any non-zero constant k_{1}; allow if brackets absent; $k_{1} \ln u$ (after sub’n) earns M1
A1 or equiv such as $\frac{10}{2} \ln (2 x+1)$; condone brackets rather than modulus signs but brackets or modulus signs must be present (so that $5 \ln 2 x+1$ earns A0)
B1 5 anywhere in the whole of question 1 ; this mark available even if no marks awarded for integration

5

2 Apply one of the transformations correctly
to their equation
Obtain correct $-3 \ln x+\ln 4$
Show at least one logarithm property

Obtain $y=\ln \left(4 x^{-3}\right)$

B1
B1 or equiv
M1 correctly applied to their equation of resulting curve (even if errors have been made earlier)
A1 4 or equiv of required form; $\ln 4 x^{-3}$ earns A1; correct answer only earns $4 / 4$; condone absence of $y=$

4

B1 or unsimplified equiv such as $7(2 \sin \alpha \cos \alpha)=3 \sin \alpha$
by valid process; may be implied
A1 3 exact answer required; ignore subsequent work to find angle
(b) Attempt use of identity for $\cos 2 \beta$

Obtain $6 \cos ^{2} \beta+19 \cos \beta+10$
A1 or unsimplified equiv or equiv involving $\sec \beta$
Attempt solution of 3-term quadratic eqn
M1 \quad for $\cos \beta$ or (after adjustment) for $\sec \beta$
Use $\sec \beta=\frac{1}{\cos \beta}$ at some stage
Obtain $-\frac{3}{2}$
M1 of form $\pm 2 \cos ^{2} \beta \pm 1$; initial use of $\cos ^{2} \beta-\sin ^{2} \beta$ needs attempt to express $\sin ^{2} \beta$ in terms of $\cos ^{2} \beta$ to earn M1
3 (a) State $14 \sin \alpha \cos \alpha=3 \sin \alpha$
Attempt to find value of $\cos \alpha$
Obtain $\frac{3}{14}$

M1 or equiv
A1 5 or equiv; and (finally) no other answer 8

4 (i) Draw sketch of $y=(x-2)^{4} \quad *$ B1 touching positive x-axis and extending at least as far as the y-axis; no need for 2 or 16 to be marked; ignore wrong intercepts Draw straight line with positive gradient at least in first quadrant and reaching positive y-axis; assess the two graphs independently of each other
Indicate two roots
B1 3 AG ; dep *B *B and two correct graphs which meet on the y-axis; indicated in words or by marks on sketch
[SC: Draw sketch of $y=(x-2)^{4}-x-16$ and indicate the two roots : B1 (i.e. max 1 mark)]
(ii) State 0 or $x=0$
(iii) Obtain correct first iterate

Show correct iteration process
Obtain at least 3 correct iterates

Obtain 4.118
A
B1 to at least 3 dp ; any starting value (>-16)
M1 producing at least 3 iterates in all; may be implied by plausible converging values
A1 allowing recovery after error; iterates given to only 3 d.p. acceptable; values may be rounded or truncated
A1 4 answer required to exactly 3 dp ; A0 here if number of iterates is not enough to justify 4.118; attempt consisting of answer only earns 0/4
$[0 \rightarrow 4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow 4.117849$;
$1 \rightarrow 4.030543 \rightarrow 4.115549 \rightarrow 4.117790 \rightarrow 4.117849$;
$2 \rightarrow 4.059767 \rightarrow 4.116321 \rightarrow 4.117811 \rightarrow 4.117850 ;$
$3 \rightarrow 4.087798 \rightarrow 4.117060 \rightarrow 4.117830 \rightarrow 4.117850 ;$
$4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow 4.117849 \rightarrow 4.117851$;
$5 \rightarrow 4.140695 \rightarrow 4.118452 \rightarrow 4.117867 \rightarrow 4.117851]$

5 Attempt use of product rule
Obtain $2 x \ln (4 x-3)$
Obtain $\ldots+\frac{4 x^{2}}{4 x-3}$
Attempt second use of product rule
Attempt use of quotient (or product) rule Obtain

$$
2 \ln (4 x-3)+\frac{8 x}{4 x-3}+\frac{8 x(4 x-3)-16 x^{2}}{(4 x-3)^{2}}
$$

Substitute 2 into attempt at second deriv
Obtain $2 \ln 5+\frac{96}{25}$
*M1 to produce $k_{1} x \ln (4 x-3)+\frac{k_{2} x^{2}}{4 x-3}$ form
A1
A1 or equiv
*M1
*M1 allow numerator the wrong way round

A1 or equiv
M1 $\quad \operatorname{dep} * M * M * M$
A1 $\mathbf{8}$ or exact equiv consisting of two terms

Method 1: (Differentiation; assume value $\frac{10}{3}$; eqn of tangent; through origin)
Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}} \quad$ M1 any constant k
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
A1 or equiv
Attempt to find equation of tangent at P and attempt to show tangent passing through origin assuming value $\frac{10}{3}$; or equiv
Obtain $y=\frac{3}{2 \sqrt{5}} x$ and confirm that tangent passes through O

A1 AG; necessary detail needed
Method 2: (Differentiation; equate $\frac{y \text { change }}{x \text { change }}$ to deriv; solve for x)
Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}} \quad$ M1 any constant k
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
A1 or equiv
Equate $\frac{y \text { change }}{x \text { change }}$ to deriv and attempt solution M1
Obtain $\frac{\sqrt{3 x-5}}{x}=\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$ and solve to
obtain $\frac{10}{3}$ only
A1

Method 3: (Differentiation; find x from $y=\mathrm{f}^{\prime}(x) x$ and $y=\sqrt{3 x-5}$)
Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}} \quad$ M1 any constant k
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
A1 or equiv
State $y=\frac{3}{2}(3 x-5)^{-\frac{1}{2}} x, y=\sqrt{3 x-5}$,
eliminate y and attempt solution M1 condone this attempt at 'eqn of tangent'
Obtain $\frac{10}{3}$ only A1

Method 4: (No differentiation; general line through origin to meet curve at one point only)
Eliminate y from equations $y=k x$ and
$y=\sqrt{3 x-5}$ and attempt formation of
quadratic eqn

Obtain $k^{2} x^{2}-3 x+5=0 \quad$ A1 or equiv
Equate discriminant to zero to find $k \quad$ M1
Obtain $k=\frac{3}{2 \sqrt{5}}$ or equiv and confirm $x=\frac{10}{3}$ A1

Method 5: (No differentiation; use coords of P to find eqn of $O P$; confirm meets curve once)
Use coordinates $\left(\frac{10}{3}, \sqrt{5}\right)$ to obtain $y=\frac{3 \sqrt{5}}{10} x$
Eliminate y from this eqn and eqn of curve and attempt quadratic eqn M1
Attempt solution or attempt discriminant M1
Confirm $\frac{10}{3}$ only or discriminant $=0$
A1

Either:

Integrate to obtain $k(3 x-5)^{\frac{3}{2}}$	*M1	any constant k
Obtain correct $\frac{2}{9}(3 x-5)^{\frac{3}{2}}$	A1	
Apply limits $\frac{5}{3}$ and $\frac{10}{3}$	M1	dep *M; the right way round
Make sound attempt at triangle area and calculate (triangle area) minus (their area under curve)	M1	or equiv
Obtain $\frac{10}{6} \sqrt{5}-\frac{10}{9} \sqrt{5}$ and hence $\frac{5}{9} \sqrt{5}$ Or:	A1	or exact equiv involving single term
Arrange to $x=\ldots$ and integrate to obtain $k_{1} y^{3}+k_{2} y$ form	*M1	
Obtain $\frac{1}{9} y^{3}+\frac{5}{3} y$	A1	
Apply limits 0 and $\sqrt{5}$	M1	dep $* \mathrm{M}$; the right way round
Make sound attempt at triangle area and calculate (their area from integration) minus (triangle area)	M1	
Obtain $\frac{20}{9} \sqrt{5}-\frac{5}{3} \sqrt{5}$ and hence $\frac{5}{9} \sqrt{5}$	A1 (9)	or exact equiv involving single term

9

7 (i) Either: Attempt solution of at least one
linear eq'n of form $a x+b=12$
Obtain $\frac{1}{3}$
Or: Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at $\mathrm{g}(x+2)$ on LHS and squaring 12 or -12 on RHS

M1
Obtain $\frac{1}{3}$
A2 (3) and (finally) no other answer
(ii) Either: Obtain $3(3 x+5)+5$ for h

Attempt to find inverse function Obtain $\frac{1}{9}(x-20)$
Or: State or imply g^{-1} is $\frac{1}{3}(x-5)$
Attempt composition of g^{-1} with g^{-1}
Obtain $\frac{1}{9}(x-5)-\frac{5}{3}$

B1
M1 of function of form $a x+b$
A1 3 or equiv in terms of x
B1

M1

A1 (3) or more simplified equiv in terms of x
(iii) State $x \leq 0$
B2 $\quad \mathbf{2}$ give B1 for answer $x<0$

8 (i) Differentiate to obtain form $\mathrm{ke}^{-0.014 t}$
Obtain $5.6 \mathrm{e}^{-0.014 t}$ or $-5.6 \mathrm{e}^{-0.014 t}$
Obtain 4.9 or -4.9 or 4.87 or -4.87
M1 any constant k different from 400
A1 or (unsimplified) equiv
A1 3 but not greater accuracy; allow if final statement seems contradictory; answer only earns $0 / 3$ - differentiation is needed
(ii) Either: State or imply $M_{2}=75 \mathrm{e}^{k t}$

Attempt to find formula for M_{2}
Obtain $M_{2}=75 \mathrm{e}^{0.047 t}$
Equate masses and attempt rearrangement
Obtain $\mathrm{e}^{0.061 t}=\frac{16}{3}$

Or: State or imply $M_{2}=75 \times r^{0.1 t}$
Obtain $75 \times 1.6^{0.1 t}$ B1
Attempt to find M_{2} in terms of e M1
Equate masses and attempt rearrangement

M1
Obtain $\mathrm{e}^{0.061 t}=\frac{16}{3}$

B1
B1 or equiv
M1
A1 or equiv such as $75 \mathrm{e}^{\left(\frac{1}{10} \ln \frac{8}{5}\right) t}$
M1 as far as equation with e appearing once
A1 5 or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii for positive value r

A1 5 or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
(iii) Attempt solution involving logarithm
of any equation of form $\mathrm{e}^{m t}=c_{1}$
Obtain 27.4

M1 whether the conclusion of part ii or not
A1 2 or greater accuracy $27.4422 \ldots$; correct answer only earns both marks

9 (i) Use at least one identity correctly Attempt use of relevant identities in single rational expression

Obtain $\frac{2 \sin \theta \cos \alpha+3 \sin \theta}{2 \cos \theta \cos \alpha+3 \cos \theta}$

Attempt factorisation of num'r and den'r
Obtain $\frac{\sin \theta}{\cos \theta}$ and hence $\tan \theta$
(ii) State or imply form $k \tan 150^{\circ}$

State or imply $\frac{4}{3} \tan 150^{\circ}$
Obtain $-\frac{4}{9} \sqrt{3}$

B1 angle-sum or angle-difference identity
M1 not earned if identities used in expression where step equiv to
$\frac{A+B+C}{D+E+F}=\frac{A}{D}+\frac{B}{E}+\frac{C}{F}$ or similar has been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos \theta \cos \alpha-\sin \theta \sin \alpha+$ $3 \cos \theta+\cos \theta \cos \alpha+\sin \theta \sin \alpha)$

A1 or equiv but with the other two terms from each of num'r and den'r absent

A1 5 AG; necessary detail needed

M1 obtained without any wrong method seen A1 or equiv such as $\frac{12 \sin 150^{\circ}}{9 \cos 150^{\circ}}$
A1 3 or exact equiv (such as $-\frac{4}{3 \sqrt{3}}$); correct answer only earns $3 / 3$
(iii) State or imply $\tan 6 \theta=k$

State $\frac{1}{6} \tan ^{-1} k$
Attempt second value of θ
Obtain $\frac{1}{6} \tan ^{-1} k+30^{\circ}$

B1

B1
M1 using $6 \theta=\tan ^{-1} k+$ (multiple of 180)
A1 4 and no other value 12

Question		Answer	Marks	Guidance	
3		Attempt use of quotient rule Obtain $\frac{2 x(x+2)-\left(x^{2}+4\right)}{(x+2)^{2}}$ Substitute 1 into attempt at first derivative Obtain $\frac{1}{9}$ Use -9 as gradient of normal Attempt to find equation of normal Obtain $27 x+3 y-32=0$	M1 A1 M1 A1 A1ft M1 A1 [7]	condone u / v muddles but needs $(x+2)^{2}$ in denominator; condone numerator back to front; or product rule to produce terms involving $(x+2)^{-1}$ and $(x+2)^{-2}$ or equiv; brackets may be implied by subsequent recovery also allow if sign slip leads to derivative cancelling to 1 following their value of first derivative not equation of tangent; needs use of negative reciprocal of their derivative value or equiv of requested form	
4	(i)	State $\tan \alpha=2$ Use identity $\sec ^{2} \beta=1+\tan ^{2} \beta$ Attempt solution of quad eqn for $\tan \beta$ Obtain $\tan \beta=5$	B1 B1 M1 A1 [4]	ignoring subsequent work to find angle 3 term quad eqn; using reasonable attempt at factorisation to find value or use of quadratic formula (with no more than one slip) ignoring subsequent work to find angle; value 5 must be obtained legitimately	

Question		Answer	Marks	Guidance	
4	(ii)	Substitute their values of $\tan \alpha$ and $\tan \beta$ in formula ... Obtain $\frac{2+5}{1-2 \times 5}$ Obtain $-\frac{7}{9}$	M1 A1ft A1 [3]	\ldots of form $\frac{ \pm \tan \alpha \pm \tan \beta}{ \pm 1 \pm \tan \alpha \tan \beta}$ following their values from part (i) or correct simplified exact equiv including $\frac{7}{-9}$; A0 if $\tan \beta=5$ obtained incorrectly in part (i) SC: use of calculator for $\tan \left(\tan ^{-1} 2+\tan ^{-1} 5\right)$ to give $-\frac{7}{9}$ earns all 3 marks (but 0 out of 3 if answer is not exact); with either or both of 2 and 5 wrong, 2 out of 3 available for this approach if result is exact and correct given their two values	
5	(i)	State 26 State 4	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$		
5	(ii)	Sketch (more or less) correct curve Refer to reflection in $y=x$ or symmetrical about $y=x$ or mirrored in $y=x$	B1 B1 [2]	with approx correct curvatures and curve going through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y=x$ explicit reference needed, not just line $y=x$ shown on sketch	

Question		Answer	Marks	Guidance	
5	(iii)	Attempt calculation $k(y+4 y+2 y+\ldots)$ Obtain $k(1+32+28+76+46+100+26)$ Use $k=\frac{1}{3} \times 2$ Obtain 206	M1 A1 A1 A1 [4]	any constant k; with y-values from table and coefficients 1,2 and 4 occurring at least once each; brackets may be implied by subsequent calculation or (unsimplified) equiv	
6	(i)	Obtain rational expression of form $\frac{f(y)}{y^{3}+2 y}$ Obtain $\frac{3 y^{2}+2}{y^{3}+2 y}$	M1 A1 [2]	where $\mathrm{f}(y)$ is not constant; ignore how expression is labelled	
6	(ii)	Recognise that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1 \div \frac{\mathrm{d} x}{\mathrm{~d} y}$ for rational expression of form $\frac{\mathrm{f}(\mathrm{y})}{y^{3}+2 y}$ Obtain $\frac{y^{3}+2 y}{3 y^{2}+2}=4$ or $\frac{3 y^{2}+2}{y^{3}+2 y}=\frac{1}{4}$ Confirm $y=\frac{12 y^{2}+8}{y^{2}+2}$	M1 A1ft A1 [3]	may be implied following their rational expression from (i) AG; following correct work and with at least one step between $\frac{y^{3}+2 y}{3 y^{2}+2}=4$ or equiv and answer	

Question		Answer	Marks	Guidan	
6	(iii)	Obtain correct first iterate 11.89 Attempt iteration process to produce at least 3 iterates in all Obtain at least 2 more correct iterates Obtain 11.888 for y Obtain 7.441 for x	B1 M1 A1 A1 A1	or greater accuracy; having started with 12 ; accept if 12 used in part (ii) to produce next value and 11.89 used as starting value here implied by plausible sequence of values; having started anywhere; if formula clearly not based on equation from part (ii), award M0 showing at least 3 decimal places answer needed to exactly 3 decimal places answer needed to exactly 3 decimal places; award final A0 if not clear which is x and which is y $\begin{aligned} & {[12 \rightarrow 11.89041 \rightarrow 11.88841 \rightarrow} \\ & 11.88837] \end{aligned}$	

Question			Answer	Marks	Guidance	
7	(i)	(a)	State or imply $\mathrm{e}^{-0.132 t}=0.25$ Attempt solution of eqn of form $\mathrm{e}^{-0.132 t}=k$ Obtain 10.5	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	or equiv such as $40 \mathrm{e}^{-0.132 t}=10$ using sound process; implied by correct ans; allow trial and improvement attempt or greater accuracy	
7	(i)	(b)	Differentiate to obtain $k e^{-0.132 t}$ Obtain $5.28 e^{-0.132 t}$ or $-5.28 e^{-0.132 t}$ Substitute 5 to obtain 2.73 or -2.73	M1 A1 A1 [3]	where k is a constant not equal to 40 (allow even if process looks like integration) or (unsimplified) equiv accept 2.7 or -2.7 or greater accuracy; allow 2.73 or -2.73 whatever it is claimed to be	
7	(ii)		EITHER Attempt to solve $40 \mathrm{e}^{2 \lambda}=31.4$ or $40 \mathrm{e}^{-2 \lambda}=31.4$ Obtain or imply $40 \mathrm{e}^{-0.121 t}$ Substitute 3 to obtain 27.8 OR Attempt calculation involving multiplication of power of $\frac{31.4}{40}$ Obtain $31.4 \times\left(\frac{31.4}{40}\right)^{0.5}$ or $40 \times\left(\frac{31.4}{40}\right)^{1.5}$ Obtain 27.8	M1 A1 A1 [3] M1 A1 A1	using sound process; method implied by correct formula for mass of B obtained or greater accuracy (-0.12103. .) or $0.5 \ln 0.785$ accept 28 or greater accuracy accept 28 or greater accuracy	

Question		Answer	Marks	Guid	
8	(i)	State $\cos 4 \theta=1-2 \sin ^{2} 2 \theta$ State or clearly imply $\sin 2 \theta=2 \sin \theta \cos \theta$ Obtain $1-8 \sin ^{2} \theta \cos ^{2} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	possibly substituted in incorrect expression	
8	(ii)	Produce expression involving $\cos \frac{4}{24} \pi$ as only trigonometrical ratio Obtain $\frac{1}{8}-\frac{1}{16} \sqrt{3}$	M1 A1 [2]	or exact equiv (including, eg $\frac{1-\frac{1}{2} \sqrt{3}}{8}$)	
8	(iii)	Use $2 \cos ^{2} 2 \theta=1+\cos 4 \theta$ Attempt to express in terms of $\cos 4 \theta$ Obtain $\frac{2}{3}+\frac{4}{3} \cos 4 \theta$ Substitute at least one of -1 and 1 for $\cos 4 \theta$ in expression where $\cos 4 \theta$ is only trigonometrical ratio Obtain 2 and $-\frac{2}{3}$	B1 M1 A1 M1 A1 [5]	or use $2 \cos ^{2} 2 \theta=2-8 \sin ^{2} \theta \cos ^{2} \theta$ or unsimplified equiv or at least one of $\theta=\frac{1}{4} \pi$ and $\theta=0$	

Question		Answer	Marks	Guidanc	
9	(i)	Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x+\ldots)^{2}$ Obtain $x=-2$ or $(x+2)^{2}$ State translation by 2 in negative x-direction State translation by 4 in negative y-direction State stretch parallel to y-axis, scale factor k	M1 A1 A1 A1 B1 [5]	or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x=-2$ only stated earns M1A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k	
9	(ii)	State one of $\begin{aligned} & y<4 k, y \leq 4 k, y<-4 k, y \leq-4 k \\ & y>4 k, y \geq 4 k, y>-4 k, y \geq-4 k \end{aligned}$ State $y \geq-4 k$	B1 B1 [2]	allow alternative notation such as $\mathrm{f}(x) \geq-4 k$ or range $\geq-4 k$	
9	(iii)	Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k\left(x^{2}+4 x\right)=20$ or of $k\left(x^{2}+4 x\right)=-20$ Obtain $k=5$ State one root $x=-2$ Attempt solution of $k\left(x^{2}+4 x\right)=20$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$ Obtain $-2 \pm 2 \sqrt{2}$ or $-2 \pm \sqrt{8}$	*M1 A1 B1 M1 A1ft A1 [6]	earned unless there is clear evidence of error in working dep ${ }^{*} \mathrm{M}$; for their value of k provided positive or (unsimplified) exact equivs; following their value of k dependent on previous A1 A1ft marks being awarded	

Question		Answer	Marks	Guidance	
1		Attempt process for finding critical values Obtain $\frac{4}{3}$ Obtain 6 Attempt process for inequality involving two critical values Obtain $x<\frac{4}{3}, x>6$	M1 A1 A1 M1 A1 [5]	squaring both sides, 2 linear eqns, ineqs, ... sketch, table, ...; implied by plausible soln A0 for use of \leq and/or \geq	If using quadratic, need to go as far as factorising or substituting in formula for M1; if using two linear eqns or ineqs, signs of $2 x$ and x must be same in one, different in the other for M1
2	(i)	EITHER Attempt use of at least one logarithm property correctly applied to $\ln \left(\frac{e p^{2}}{q}\right)$ Obtain 261 legitimately with necessary detail seen OR Express $\frac{\mathrm{e} p^{2}}{q}$ in form e^{n} Obtain e^{261} and hence 261	M1 A2 [3] M1 A2	not including $\ln \mathrm{e}=1$; such as $\ldots=\ln \mathrm{e} p^{2}-\ln q$ for example AG; award A1 if nothing wrong but not quite enough detail or if there is one slip on way to 261 with correct treatment of powers AG; award A1 if nothing wrong but not quite enough detail to be fully convincing	
2	(ii)	Introduce logarithms and bring power down Obtain $n \ln 5>580$ State single integer 361	M1 A1 A1 [3]	relating $n \ln 5$ to a constant; if using base 5 or base 10, no powers must remain on right-hand side or equiv (such as $n>580 \log _{5} \mathrm{e}$ or $n \log 5>580 \log \mathrm{e}$); allow eqn at this stage not $n>360$ nor $n \geq 361$	

Question			Answer	$\begin{gathered} \text { Marks } \\ \hline \text { B1 } \end{gathered}$	Guidance	
3	(i)		Use $\sec \theta=\frac{1}{\cos \theta}$ Attempt to express in terms of $\tan \theta$ only Obtain $\tan ^{2} \theta=36$ and hence $\tan \theta=6$	B1 M1 A1 [3]	AG; necessary detail needed (but no need to justify exclusion of $\tan \theta=-6$)	
3	(ii)	(a)	Substitute 6 in attempt at formula $\text { Obtain } \frac{5}{7}$	M1 A1 [2]	of form $\frac{\tan \theta \pm \tan 45^{\circ}}{1 \mp \tan \theta \tan 45^{\circ}}$ with different signs in numerator and denominator or exact equiv	any apparent use of angle 80.5.. means M0 answer only: $0 / 2$
3	(ii)	(b)	Substitute 6 in attempt at formula Obtain $-\frac{12}{35}$	M1 A1 [2]	of form $\frac{\tan \theta+\tan \theta}{1 \pm \tan \theta \tan \theta}$ or exact equiv; allow $\frac{12}{-35}$	any apparent use of angle 80.5.. means M0 answer only: 0/2
4	(a)		Obtain integral of form $k(6 x+1)^{\frac{1}{2}}$ Obtain $6(6 x+1)^{\frac{1}{2}}$ Substitute both limits and subtract Obtain 30-6 and hence 24	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	any constant k or (unsimplified) equiv dep *M AG; necessary detail needed	
4	(b)		Attempt expansion of integrand Integrate $\mathrm{e}^{k x}$ to obtain $\frac{1}{k} \mathrm{e}^{k x}$ Obtain $\frac{1}{2} \mathrm{e}^{2 x}+4 \mathrm{e}^{x}+4 x$ Obtain $\frac{1}{2} \mathrm{e}^{2}+4 \mathrm{e}-\frac{1}{2}$	M1 M1 A1 A1 [4]	to obtain (at least) 3 terms for any constant k other than 1 allow $+c$ at this stage or equiv in terms of e simplified to three terms; no $+c$ now	

Question			Answer	Marks	Guidance
5	(i)		Sketch (more or less) correct $y=14-x^{2}$ Sketch (more or less) correct $y=k \ln x$ Indicate one root ('blob' on sketch or written reference to one intersection or ...)	B1 B1 B1 [3]	assessed separately from other graph; must exist in all four quadrants; ignore any intercepts given assessed separately from other graph; must exist in first and fourth quadrants; if clearly meets y-axis award B0; if clear maximum point in first quadrant award B0 dependent on both curves being correct in first quadrant and there being no possibility, from their graphs, of further points of intersection elsewhere
5	(ii)	(a)	Calculate values for at least 2 integers Obtain correct values for $x=3$ and $x=4$ State 3 and 4	M1 A1 A1 [3]	$\begin{array}{lll} 14-x^{2}-3 \ln x: & 1.7 & -6.2 \\ 14-x^{2}, & 3 \ln x: & 5, \\ 3.3 & -2,4.2 \end{array}$ following correct calculations
5	(ii)	(b)	Obtain correct first iterate Attempt iteration process Obtain at least 3 correct iterates in all Obtain 3.24	B1 M1 A1 A1 [4]	having started with any positive value; B1 available if 'iteration' never goes beyond a first iterate; implied by plausible sequence of values showing at least 2 d.p. answer required to exactly 2 d.p; not given for 3.24 as the final iterate in a sequence, i.e. needs an indication (perhaps just underlining) that value of α found $\begin{aligned} & {[3 \rightarrow 3.27172 \rightarrow 3.23173 \rightarrow 3.23743 \rightarrow 3.23661} \\ & 3.5 \rightarrow 3.20027 \rightarrow 3.24196 \rightarrow 3.23596 \rightarrow 3.23682 \\ & 4 \rightarrow 3.13706 \rightarrow 3.25118 \rightarrow 3.23465 \rightarrow 3.23701] \end{aligned}$

	Quest	Answer	Marks	Guidance
6	(i)	Attempt use of chain rule Obtain $9 h\left(3 h^{2}+4\right)^{\frac{1}{2}}$ Substitute 0.6 in attempt at first derivative Obtain 12.17	*M1 A1 M1 A1 [4]	to obtain derivative of form $k h\left(3 h^{2}+4\right)^{n}$, any non-zero constants k and n condone retention of -8 or (unsimplified) equiv; no - 8 here dep ${ }^{*} \mathrm{M}$; condone retention of -8 here; implied by their value following wrong derivative if no working seen or greater accuracy
6	(ii)	State or imply that $\frac{\mathrm{d} h}{\mathrm{~d} t}=-0.015$ or 0.015 Carry out multiplication of $(\pm) 0.015$ and answer from part (i) Obtain 0.18 or -0.18 (whatever this value is claimed to be)	B1 M1 A1 [3]	implied by use in calculation with part (i) answer or greater accuracy; condone absence or misuse of negative signs throughout; ignore units; allow for answer rounding to 0.18 following slight inaccuracy due to use of 12.18 or 12.2 or ...
7		Show composition of functions Obtain $2 \sqrt[3]{12-a}+5=9$ Obtain $a=4$ EITHER Attempt to find $\mathrm{g}(x)$ Obtain $(2 x+5)^{3}+4=68$ Attempt solution of equation Obtain $-\frac{1}{2}$ OR State or imply $\mathrm{f}(x)=\mathrm{g}^{-1}(68)$ Attempt solution of equation of form $2 x+5=\sqrt[3]{68-4}$ Obtain $-\frac{1}{2}$	M1 A1 A1 *M1 A1ft M1 A1 [7] B2 M1 A1	the right way round; or equiv or equiv obtaining $p x^{3}+q$ or $p y^{3}+q$ form following their value of a dep ${ }^{*} \mathrm{M}$; earned at stage $2 x+5=\ldots$; if expanding to produce cubic equation, earned with attempt at linear and quadratic factors and no others; dependent on correct work throughout

Question			Answer	Marks	Guidance	
8	(i)		State $R=5$ Attempt to find value of α Obtain 53.1	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	implied by correct value or its complement allow $\tan ^{-1} \frac{4}{3}$	
8	(ii)	(a)	Attempt to find at least one value of $\theta+\alpha$ Obtain 1 correct value of θ (-64.7 or 138) Attempt correct process to find the second value Obtain second value of θ (138 or -64.7)	M1 A1 M1 A1 [4]	(should be -168.5 or -11.5 or 191.5 or ...) allow ± 0.1 in answer and greater accuracy involving a positive value of $\sin ^{-1}\left(-\frac{1}{5}\right)$ and subtraction of their α allow ± 0.1 in answer and greater accuracy; and no others between -180 and 180	note that 138 needs to be obtained legitimately from positive value of $\sin ^{-1}\left(-\frac{1}{5}\right)$ and not from 180-41.6 answers only: 0/4
8	(ii)	(b)	Use -1 as minimum or 1 as maximum value of $\sin (\theta+\alpha)$ Relate $-5 k+c$ to -37 and $5 k+c$ to 43 Attempt solution of pair of linear eqns Obtain $k=8$ and $c=3$	*M1 A1 M1 A1 [4]	as equations or inequalities dep *M; must be equations now SC: both $k=8$ and $c=3$ obtained with no working or from unconvincing working, award B2 (i.e. max 2/4)	Note that alternative solutions may occur. If mathematically sound, all 4 marks are available; if work is not fully convincing, apply SC

Question		Answer	Marks	Guidance	
9	(i)	Attempt use of product rule to produce the form $\ln 2 y+y \times \frac{a}{b y}$ Obtain correct $\ln 2 y+y \times \frac{2}{2 y} \ldots$ Obtain complete $\ln 2 y+1-1$ and confirm	M1 A1 A1 [3]	or equiv AG; necessary detail needed	Note that product rule may be applied to expression in form $y(\ln 2 y-1)$
9	(ii)	Attempt to rearrange eqn to $x=\ldots$ or $x^{2}=\ldots$ Obtain $x=\sqrt{\ln 2 y}$ or $x^{2}=\ln 2 y$ State or imply volume is $\int \pi \ln 2 y d y$ Integrate using result of part (i) Attempt to use limits $\frac{1}{2}$ and $\frac{1}{2} \mathrm{e}^{4}$ correctly with expression involving y Obtain $\frac{1}{2} \pi\left(3 \mathrm{e}^{4}+1\right)$	M1 A1 A1ft M1 M1 A1 [6]	obtaining form $p \ln q y$ following their $x=\ldots$ or $x^{2}=\ldots$; condone absence of dy; condone presence of $\mathrm{d} x$; no need for limits here; π may be implied by its first appearance later in solution or equiv involving two terms; dependent on correct work throughout part (ii)	
9	(iii)	Subtract answer to part (ii) from $2 \pi \mathrm{e}^{4} \ldots$ Obtain $\frac{1}{2} \pi\left(\mathrm{e}^{4}-1\right)$	M1 A1 [2]	... or its decimal equivalent or exact equiv involving two terms	

Question		Answer	Marks	Guidance
1	(i)	Either Attempt use of quotient rule Obtain $\frac{3(2 x+1)-6 x}{(2 x+1)^{2}}$ or equiv Substitute 2 to obtain $\frac{3}{25}$ or 0.12 Or Attempt use of product rule for $3 x(2 x+1)^{-1}$ Obtain $3(2 x+1)^{-1}-6 x(2 x+1)^{-2}$ or equiv Substitute 2 to obtain $\frac{3}{25}$ or 0.12	M1 A1 A1 [3] M1 A1 A1	allow numerator wrong way round but needs minus sign in numerator and both terms in numerator involving x; for M1 condone minor errors such as absence of square in denominator, absence of brackets, ... give A0 if necessary brackets absent unless subsequent calculation indicates their 'presence' or simplified equiv but A0 for final $\frac{3}{5^{2}}$ allow sign error; condone no use of chain rule or simplified equiv
1	(ii)	Differentiate to obtain form $k x\left(4 x^{2}+9\right)^{n}$ Obtain $4 x\left(4 x^{2}+9\right)^{-\frac{1}{2}}$ Substitute 2 to obtain $\frac{8}{5}$ or 1.6	M1 A1 A1 [3]	any non-zero constants k and n (including 1 or $\frac{1}{2}$ for n) or (unsimplified) equiv or simplified equiv but A0 for final $\frac{8}{\sqrt{25}}$
2	(i)	Either Attempt to find exact value of $\sin A$ Obtain $\frac{1}{2} \sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv Or Attempt use of identity $1+\cot ^{2} A=\operatorname{cosec}^{2} A$ Obtain $\frac{1}{2} \sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	using right-angled triangle or identity or ... final $\pm \frac{1}{2} \sqrt{5}$ is A0; correct answer only earns M1A1 using $\cot A=\frac{1}{2}$; allow sign error in attempt at identity final $\pm \frac{1}{2} \sqrt{5}$ is A0; correct answer only earns M1A1
2	(ii)	State or imply $\frac{2+\tan B}{1-2 \tan B}=3$ Attempt solution of equation of form $\frac{\text { linear in } t}{\text { linear in } t}=3$ Obtain $\tan B=\frac{1}{7}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	by sound process at least as far as $k \tan B=c$ answer must be exact; ignore subsequent attempt to find angle B

Question		Answer	Marks	Guidance
3	(a)	Substitute $t=3$ in $\|2 t-1\|$ and obtain value 5 Substitute $t=-3$ in $\|2 t-1\|$ and apply modulus correctly to any negative value to obtain a positive value Obtain value 7 as final answer	B1 M1 A1 [3]	not awarded for final $\|5\|$ nor for ± 5 with no modulus signs remaining not awarded for final $\|7\|$ nor for ± 7 NB: substitutions in $\|2 t+1\|$ will give 5 and 7 - this is $0 / 3$, not MR; a further step to $5<t<7-$ B1 M1 A0; answers $\pm 5, \pm 7$ - this is B0 M0 A0
3	(b)	Either Attempt solution of linear equation or inequality with signs of x different Obtain critical value $-\sqrt{2}$	M1 A1	or equiv (exact or decimal approximation)
		Or 1 Attempt to square both sides Obtain $x^{2}-2 \sqrt{2} x+2>x^{2}+6 \sqrt{2} x+18$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	obtaining at least 3 terms on each side or equiv; or equation; condone > here
		Or 2 Attempt sketches of $y=\|x-\sqrt{2}\|, y=\|x+3 \sqrt{2}\|$ Obtain $x=-\sqrt{2}$ at point of intersection	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	or equiv
		Conclude with inequality of one of the following types: $x<k \sqrt{2}, \quad x>k \sqrt{2}, \quad x<\frac{k}{\sqrt{2}}, \quad x>\frac{k}{\sqrt{2}}$ Obtain $x<-\sqrt{2}$ or $-\sqrt{2}>x$ as final answer	M1 A1 [4]	any integer k final answer $x<-\frac{2}{\sqrt{2}}$ (or similar unsimplified version) is A0

Question		Answer	Marks	Guidance
4	(i)	Attempt process involving logarithm to solve $\mathrm{e}^{0.021 t}=2$ Obtain 33 State (or calculate separately to obtain) 99	M1 A1 B1 $\sqrt{ }$ [3]	with t the only variable; at least as far as $0.021 t=\ln 2$; must be $\ldots=2$ or greater accuracy; ignore absence of, or wrong, units; final answer $\frac{\ln 2}{0.021}$ is A0 following previous answer; no need to include units
4	(ii)	Differentiate to obtain $k \mathrm{e}^{0.021 t}$ Obtain $250 \times 0.021 \mathrm{e}^{0.021 t}$ Substitute to obtain 8.4 or $\frac{42}{5}$	M1 A1 A1 [3]	where k is any constant not equal to 250 or simplified equiv $5.25 \mathrm{e}^{0.021 t}$ or value rounding to 8.4 with no obvious error
5	(i)	Integrate to obtain form $k(3 x+1)^{\frac{1}{2}}$ Obtain $4(3 x+1)^{\frac{1}{2}}$ Apply the limits and subtract the right way round Obtain $4 \sqrt{28}-4 \sqrt{7}$ and show at least one intermediate step in confirming $4 \sqrt{7}$	*M1 A1 M1 A1 [4]	any non-zero constant k or (unsimplified) equiv; or $4 u^{\frac{1}{2}}$ following substitution dep *M AG; necessary detail required; decimal verification is A0; $[\ldots]_{2}^{9}=4 \sqrt{28}-4 \sqrt{7}=4 \sqrt{7}$ is $\mathrm{A} 0 ; \quad[\ldots]_{2}^{9}=8 \sqrt{7}-4 \sqrt{7}=4 \sqrt{7}$ is A 0
5	(ii)	State or imply volume is $\int \pi\left(\frac{6}{\sqrt{3 x+1}}\right)^{2} \mathrm{~d} x$ or equiv Integrate to obtain $k \ln (3 x+1)$ Obtain $12 \pi \ln (3 x+1)$ or $12 \ln (3 x+1)$ Substitute limits correct way round and show each logarithm property correctly applied Obtain $24 \pi \ln 2$	B1 M1 A1 M1 A1 [5]	merely stating $\int \pi y^{2} \mathrm{~d} x$ not enough; condone absence of $\mathrm{d} x$; no need for limits yet; π may be implied by its later appearance any non-zero constant with or without π or unsimplified equiv allowing correct applications to incorrect result of integration providing natural logarithm involved; evidence of $\ln 28-\ln 7=\frac{\ln 28}{\ln 7}$ error means M0 no need for explicit statement of value of k

Question		Answer	Marks	Guidance
6	(i)	Sketch more or less correct $y=\ln x$ Sketch more or less correct $y=8-2 x^{2}$ Indicate intersection by some mark on diagram (just a 'blob’ sufficient) of by statement in words away from diagram	B1 B1 B1 [3]	existing for positive and negative y; no need to indicate (1, 0); ignore any scales given on axes; condone graph touching y-axis but B0 if it crosses y-axis (roughly) symmetrical about y-axis; extending, if minimally, into quadrants for which $y<0$; no need to indicate $(\pm 2,0),(0,8)$; assess each curve separately needs each curve to be (more or less) correct in the first quadrant and on curves being related to each other correctly there
6	(ii)	Refer, in some way, to graphs crossing x-axis at $x=1$ and $x=2$ and that intersection is between these values	B1 [1]	AG; the values 1 and 2 may be assumed from part (i) if clearly marked there; dependent on curves being (more or less) correct in first quadrant; carrying out the sign-change routine is B 0
6	(iii)	Obtain correct first iterate Show correct iterative process Obtain at least 3 correct iterates Conclude with 1.917 $\begin{aligned} 1 \rightarrow 2 & \rightarrow 1.91139 \\ 1.5 & \rightarrow 1.94865 \ldots \\ 2 & \rightarrow 1.91139 \ldots \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & {[4]} \\ & \rightarrow \quad 1.91 \\ & 1.9147 \\ & 1.91731 \end{aligned}$	to at least 3 dp (except in the case of starting value 1 leading to 2) involving at least 3 iterates in all; may be implied by plausible converging values allowing recovery after error; iterates given to at least 3 dp ; values may be rounded or truncated answer required to exactly 3 dp ; answer only with no evidence of process is $0 / 4$ $\begin{aligned} & 31 \ldots \rightarrow 1.91690 \ldots \rightarrow 1.91693 \ldots \\ & \ldots \rightarrow 1.91707 \ldots \rightarrow 1.91692 \ldots \\ & \ldots \rightarrow 1.91690 \ldots \rightarrow 1.91693 \ldots \end{aligned}$
6	(iv)	Obtain 3.92 or greater accuracy Attempt $4 \times \ln$ (part (iii) answer) Obtain y-coordinate 2.60	$\begin{gathered} \hline \text { B1 } \sqrt{ } \\ \text { M1 } \\ \text { A1 } \\ \text { [3] } \\ \hline \end{gathered}$	following their answer to part (iii) value required to exactly 2 dp (so A0 for 2.6 and 2.603)

Question		Answer	Marks	Guidance
7	(i)	Attempt use of product rule Obtain $\ln (2 y+3) \ldots$ Obtain $\ldots+\frac{2(y+4)}{2 y+3}$	M1 A1 A1 [3]	to produce expression of form (something non-zero) $\ln (2 y+3)+\frac{\text { linear in } y}{\text { linear in } y}$; ignore what they call their derivative with brackets included with brackets included as necessary
7	(ii)	Substitute $y=0$ into attempt from part (i) or into their attempt (however poor) at its reciprocal Obtain 0.27 for gradient at A Attempt to find value of y for which $x=0$ Substitute $y=-1$ into attempt from part (i) or into their attempt (however poor) at its reciprocal Obtain 0.17 or $\frac{1}{6}$ for gradient at B	M1 A1 M1 M1 A1 [5]	or greater accuracy $0.26558 \ldots$; beware of 'correct' answer coming from incorrect version $\ln (2 y+3)+\frac{8}{3}$ of answer in part (i) allowing process leading only to $y=-4$ or greater accuracy $0.16666 \ldots$; value following from correct working
8	(i)	Attempt completion of square at least as far as $(x+2 a)^{2}$ or differentiation to find stationary point at least as far as linear equation involving two terms Obtain $(x+2 a)^{2}-3 a^{2}$ or $\left(-2 a,-3 a^{2}\right)$ Attempt inequality involving appropriate y-value State $y \geq-3 a^{2}$ or $\mathrm{f}(x) \geq-3 a^{2}$	$\begin{gathered} * \mathrm{M} 1 \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	or equiv but a must be present dep $* \mathrm{M}$; allow $<$, > or \leq here; allow use of x; or unsimplified equiv now with \geq; here $x \geq-3 a^{2}$ is A0

Question		Answer	Marks	Guidance
8	(ii)	Attempt composition of f and g the right way round Obtain or imply $16 x^{2}-3 a^{2}$ or $144-3 a^{2}$ Attempt to find a from $\operatorname{fg}(3)=69$ Obtain at least $a=5$ Attempt to solve $4 x-10=x$ or $\frac{1}{4}(x+10)=x$ or $4 x-10=\frac{1}{4}(x+10)$ Obtain $\frac{10}{3}$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	algebraic or (part) numerical; need to see $4 x-2 a$ replacing x at least once or less simplified equiv but with at least the brackets expanded correctly $\operatorname{dep} * \mathrm{M}$ for their a; must be linear equation in one variable; condone sign slip in finding inverse of g and no other answer
9	(i)	State $\cos \theta \cos 45-\sin \theta \sin 45$ Use correct identity for $\sin 2 \theta$ or $\cos 2 \theta$ Attempt complete simplification of left-hand side Obtain $\sin ^{2} \theta$	B1 B1 M1 A1 [4]	or equiv including use of decimal approximation for $\frac{1}{\sqrt{2}}$ must be used; not earned for just a separate statement with relevant identities but allowing sign errors, and showing two terms involving $\sin \theta \cos \theta$ AG; necessary detail needed
9	(ii)	Use identity to produce equation of form $\sin \frac{1}{2} \theta=c$ Obtain 70.5 or 70.6 Obtain -70.5 or -70.6	M1 A1 A1 $\sqrt{ }$	condoning single value of constant c here (including values outside the range -1 to 1); M0 for $\sin \theta=c$ unless value(s) are subsequently doubled or greater accuracy $70.528 \ldots$ or greater accuracy $-70.528 \ldots$; following first answer; and no other answer between -90 and 90; answer(s) only : 0/3
9	(iii)	State or imply $6 \sin ^{2} \frac{1}{3} \theta=k$ Attempt to relate k to at least $6 \sin ^{2} 30^{\circ}$ Obtain $0<k<\frac{3}{2}$	B1 M1 A1 [3]	condone use of \leq

Question		Answer	Marks	Guidance
1	(i)	Obtain integral of form $k(4-3 x)^{8}$ Obtain $-\frac{1}{24}(4-3 x)^{8}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	any non-zero constant k; using substitution to obtain $k u^{8}$ earns M1 or unsimplified equiv; must be in terms of x
1	(ii)	Obtain integral of form $k \ln (4-3 x)$ Obtain $-\frac{1}{3} \ln (4-3 x)$ Include $+c$ or $+k$ at least once	M1 A1 B1 [5]	any non-zero constant k; allow M1 if brackets missing; using substitution to obtain $k \ln u$ earns M1; $\log (4-3 x)$ with base e not specified is M1A0 now with either brackets or modulus signs; must be in terms of x; note that $-\frac{1}{3} \ln \left(x-\frac{4}{3}\right)$ and $-\frac{1}{3} \ln \left(\frac{4}{3}-x\right)$ are correct alternatives anywhere in solution to question 1 ; this mark available even if no other marks earned
2	(i)	Use $2 \cos ^{2} \alpha-1$ or $\cos ^{2} \alpha-\sin ^{2} \alpha$ or $1-2 \sin ^{2} \alpha$ Obtain equation in which $\sin ^{2} \alpha$ appears once Obtain $\pm \frac{2}{3}$	B1 M1 A1 [3]	condoning sign slips or arithmetic slips; for solution which gives equation involving $\tan ^{2} \alpha$, M1 is not earned until valid method for reaching $\sin \alpha$ is used; attempt involving $4\left(1-s^{2}\right)=s^{2}$ is M0 both values needed; ± 0.667 is A0; $\pm \sqrt{\frac{4}{9}}$ is A0; ignore subsequent work to find angle(s)
2	(ii)		M1 A1 M1 A1 $[4]$ M1 A1 M1 A1 [4]	of form $\tan ^{2} \beta= \pm \sec ^{2} \beta \pm 1$ condone absence of $=0$ if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$ using identities which are correct apart maybe for sign slips condone absence of $=0$ if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$

Question		Answer	Marks	Guidance
3	(i)	Use α (possibly implicitly) to state that radius of 'base' is $\frac{1}{2} x$ Substitute into formula to obtain $\frac{1}{3} \pi\left(\frac{1}{2} x\right)^{2} x$ or $\frac{1}{3} \pi \frac{1}{4} x^{2} x$ and obtain $\frac{1}{12} \pi x^{3}$	*B1 B1 [2]	or to obtain equiv such as $2 r=x$ or $\frac{r}{x}=\frac{1}{2}$ or $\frac{x}{r}=2$ dep *B; AG; necessary detail needed Note: comparing formulae $\frac{1}{3} \pi r^{2} h$ and $\frac{1}{12} \pi x^{3}$ to 'deduce' is B0B0
3	(ii)	Differentiate to obtain $\frac{1}{4} \pi x^{2}$ or equiv Attempt division involving 14 and their value of derivative when $x=8$ Obtain 0.28	B1 M1 A1	whatever they call it ie $14 \div$ deriv or deriv $\div 14$ with $x=8$ allow 0.279 but not greater accuracy Alternatives: 1. $14 t=\frac{1}{12} \pi x^{3}$ Obtain $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{56} \pi x^{2}$ B1 Sub 8 and invert $\underline{\text { M1 }}$ Ans $\underline{\text { A1 }}$ 2. $x^{3}=\frac{168 t}{\pi}$ Obtain $3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{168}{\pi}$ B1 Sub $8 \underline{\text { M1 }}$ Ans $\underline{\text { A1 }}$
4		Differentiate first term to obtain form $k(4 x-7)^{-\frac{1}{2}}$ Obtain $2(4 x-7)^{-\frac{1}{2}}$ Attempt use of quotient rule or, after adjustment, product rule Obtain $\frac{4(2 x+1)-8 x}{(2 x+1)^{2}}$ or $4(2 x+1)^{-1}-8 x(2 x+1)^{-2}$ Substitute 4 into expression for first derivative so that (initially at least) exactness is retained Obtain $\frac{58}{81}$	*M1 A1 *M1 A1 M1 A1 [6]	any non-zero constant k; M0 if this differentiation is carried out in the midst of some incorrect involved expression or (unsimplified) equiv for QR , allow numerator wrong way round but needs - sign in numerator; condone a single error such as absence of square in denominator, absence of brackets, ...; for PR, condone no use of chain rule M0 if this differentiation is carried out in the midst of some incorrect involved expression or (unsimplified) equivs; give A0 if brackets absent unless subsequent calculation indicates their 'presence' $\operatorname{dep} * M * M$ answer must be exact Note: using $y=\sqrt{4 x-7}+\frac{4}{2 x+1}$: do not apply MR

Question		Answer	Marks	Guidance
5	(i)	Refer to translation and stretch Either State translation in negative x-direction by 3 State stretch by factor 2 in y-direction	M1 A1 A1 [3]	in either order; ignore details here; allow any equiv wording (such as move or shift for translation) to describe geometrical transformation but not statements such as add 3 to x or state translation by $\binom{-3}{0}$; accept horizontal to indicate direction; term 'translate' or 'translation' needed for award of A1 or parallel to y-axis or vertically; term 'stretch' needed for award of A1; these two transformations can be given in either order SC: if M0 but details of one transformation correct, award B1 for $1 / 3$ (in Either, Or 1, Or 2 cases)
		Or 1 State stretch by factor $\frac{1}{2}$ in x-direction State translation in negative x-direction by 3 Or 2 State translation in negative x-direction by 6 State stretch by factor $\frac{1}{2}$ in x-direction	A1 A1 [3] A1 A1 [3]	or parallel to x-axis; term 'stretch' needed for award of A1 or state translation by $\binom{-3}{0}$; term 'translate' or 'translation' needed for award of A1; these two transformations must be in this order - if details correct for M1A1A1 but order wrong, award M1A1A0 or state translation by $\binom{-6}{0}$; term 'translate' or 'translation' needed for award of A1 or parallel to x-axis; term 'stretch' needed for award of A1; these two transformations must be in this order - if details correct for M1A1A1 but order wrong, award M1A1A0
5	(ii)	Either Solve linear eqn/ineq to obtain critical value -6 Attempt solution of linear eqn/ineq where signs of x and $2 x$ are different Obtain critical value -2 Attempt solution of inequality Obtain $-6<x<-2$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \\ & \hline \end{aligned}$	using table, sketch, ...; implied by correct answer or answer of form $a<x<b$ or of form $x<a, x>b$ (where $a<b$); allow \leq here as final answer; must be $<$ not \leq; allow " $x>-6$ and $x<-2$ "

Question		Answer	Marks	Guidance
		Or Square both sides to obtain $x^{2}>4\left(x^{2}+6 x+9\right)$ Attempt solution of 3-term quadratic eqn/ineq Obtain critical values -6 and -2 Attempt solution of inequality Obtain $-6<x<-2$	B1 M1 A1 M1 A1 [5]	or equiv with same guidelines as in Q2(ii) for factorising and formula using table, sketch, ...; implied by correct answer or answer of form $a<x<b$ or of form $x<a, x>b$ (where $a<b$); allow \leq here as final answer; must be $<$ not \leq; allow ' $x>-6$ and $x<-2$ '
6	(i)	Attempt evaluation involving y values Obtain $k(\ln 3+4 \ln 7+2 \ln 19+4 \ln 39+\ln 67)$ Identify value of k as $\frac{2}{3}$ Obtain 22.4	M1 A1 A1 A1 [4]	with coefficients 1, 4 and 2 each occurring at least once; allow for wrong y-values; solution must include sufficient evidence of method any constant k; or decimal equivs; correct use of brackets required unless subsequent working shows their 'presence' as factor for their complete expression allow any value rounding to 22.4 ; answer only is $0 / 4$
6	(ii)	State $9+6 x^{2}+x^{4}=\left(3+x^{2}\right)^{2}$ Show relevant property $\ln \left(3+x^{2}\right)^{2}=2 \ln \left(3+x^{2}\right)$ and conclude with value 2 A	B1 B1 [2]	or, if proceeding numerically, demonstrate in at least three cases that $\ln 9=\ln 3^{2}, \ln 49=\ln 7^{2}, \ln 361=\ln 19^{2}, \ldots$ AG; necessary detail needed; if proceeding numerically, needs all five cases with relevant property Note: using Simpson's rule again here is B0B0
6	(iii)	Recognise $\ln \left(3 \mathrm{e}+\mathrm{e} x^{2}\right)$ as $1+\ln \left(3+x^{2}\right)$ Indicate in some way that $\int_{0}^{8} 1 \mathrm{~d} x$ is 8 and conclude with value $A+8$	B1 B1 [2]	AG; necessary detail needed Note: using Simpson's rule again here is B0B0
7	(i)	State $y>3$ or $\mathrm{f}(x)>3$ or $\mathrm{f}>3$ or 'greater than 3'	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	must be $>$ not \geq; allow $3<y<\infty$

Question			Answer	Marks	Guidance
7	(ii)		Obtain expression or eqn involving $\ln \left(\frac{y-3}{4}\right)$ or $\ln \left(\frac{x-3}{4}\right)$ Obtain $\ln \left(\frac{4}{x-3}\right)$ or $-\ln \left(\frac{x-3}{4}\right)$ State domain is $x>3$ or equiv State range is all real numbers or equiv	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1FT } \\ \text { B1 } \\ \text { [4] } \\ \hline \end{gathered}$	or equivs such as $\ln \left(\frac{4}{y-3}\right)$ or $\ln \left(\frac{4}{x-3}\right)$ or equiv following answer to part (i) (but with adjustment so that reference is to x)
7	(iii)		Obtain correct first iterate Show correct iteration process Obtain at least 3 correct iterates Obtain (3.168, 3.168) $[3 \rightarrow 3.199148 . . \rightarrow 3.16$	B1 M1 A1 A1 7.. \rightarrow [4]	showing at least 3 dp ; B0 if initial value not 3 but then M1A1A1 available showing at least 3 iterates in all; may be implied by plausible converging values; M1available if based on equation with just a slip in $x=\mathrm{f}(x)$ but M0 if based on clearly different equation allowing recovery after error; iterates to only 3 dp acceptable; values may be rounded or truncated each coordinate required to exactly 3 dp ; award A0 if fewer than 4 iterates shown; part (iii) consisting of answer only gets 0 out of 4 $\text { 3.169162.. } \rightarrow \text { 3.168155.. } \rightarrow \text { 3.168324..] }$
7	(iv)		State P is point where the curves meet	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	or equiv
8	(i)		Obtain $R=\sqrt{20}$ or $R=4.47$ Attempt to find value of α Obtain 26.6	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	implied by correct value or its complement; allow sin/cos muddles; allow use of radians for M1; condone use of $\cos \alpha=4, \sin \alpha=2$ here but not for A1 or greater accuracy $26.565 . .$. ; with no wrong working seen
8	(ii)	(a)	Show correct process for finding one answer Obtain 21.3 Show correct process for finding second answer Obtain 286 or 285.6	M1 A1FT M1 A1FT [4]	allowing for case where the answer is negative or greater accuracy $21.3045 \ldots$; or anything rounding to 21.3 with no obvious error; following a wrong value of α but not wrong R ie attempting fourth quadrant value minus α value or greater accuracy $285.5653 \ldots$; or anything rounding to 286 with no obvious error; following a wrong value of α but not wrong R;and no others between 0° and 360°

Question			Answer	Marks	Guidance
8	(ii)	(b)	State greatest value is 25 Obtain value 63.4 clearly associated with correct greatest value State least value is 5 Attempt to find θ from $\cos (\theta+$ their $\alpha)=-1$ Obtain 153 or 153.4	B1 B1FT B1 M1 A1FT [5]	allow if α incorrect or greater accuracy 63.4349...; following a wrong value of α allow if α incorrect and clearly associated with correct least value or greater accuracy $153.4349 \ldots$; following a wrong value of α
9	(i)		Differentiate to obtain $2 \mathrm{e}^{2 x}-18$ Equate first derivative to zero and use legitimate method to reach equation without e involved Confirm $x=\ln 3$	B1 M1 A1 [3]	AG; necessary detail needed (in particular, for solutions concluding $x=\frac{1}{2} \ln 9=\ln 3$ or equiv award A0)
9	(ii)		Attempt integration Obtain $\frac{1}{2} \mathrm{e}^{2 x}-9 x^{2}+15 x$ Apply limits 0 and $\ln 3$ to obtain exact unsimplified expression Obtain $4-9(\ln 3)^{2}+15 \ln 3$ Attempt area of trapezium or equiv, retaining exactness throughout Obtain $\frac{1}{2} \ln 3 \times(16+24-18 \ln 3)$ Subtract areas the right way round, retaining exactness Obtain $5 \ln 3-4$	*M1 A1 M1 A1 M1 A1 M1 A1 [8]	confirmed by at least one correct term or equiv $\operatorname{dep} *^{*}$ or exact (maybe unsimplified) equiv perhaps still involving e using $\frac{1}{2} \ln 3 \times\left(y_{1}+y_{2}\right)$ where y_{1} is 15 or 16 and y_{2} is attempt at y coordinate of Q; if using alternative approach involving rectangle and triangle, complete attempt needs to be seen for M1; another alternative approach involves equation of $P Q\left(y=\frac{8-18 \ln 3}{\ln 3} x+16\right)$ with integration: M1 for attempting equation and integration, A1 for correct answer or equiv perhaps still including e dep on award of all three M marks or similarly simplified exact equiv

Question		Answer	Marks	Guidance	
3	(i)	Attempt calculation $k(y+4 y+2 y+\ldots)$ Obtain $k\left(\mathrm{e}^{0}+4 \mathrm{e}^{\sqrt{0.5}}+2 \mathrm{e}+4 \mathrm{e}^{\sqrt{1.5}}+\mathrm{e}^{\sqrt{2}}\right)$ Use $k=\frac{1}{3} \times \frac{1}{2}$ Obtain 5.38	M1 A1 A1 A1 [4]	any constant k; using y values with coefficients 1,2 , 4 each occurring at least once; brackets may be implied by subsequent calculation or equiv perhaps involving decimal values 1, 2.02811.,.2.71828.,., 3.40329.,.4.11325... allow 5.379 but not, in final answer, greater ' accuracy; answer $5.38+c$ is final A0	allow M1 for attempt using y values based on wrong x values such as $0,1,2,3,4$; attempt based on $k\left(y_{0}+y_{4}\right)+4 y_{1}+2 y_{2}+4 y_{3}$ is M0 unless subsequent calculation shows missing brackets are ' present' answer only: 0/4
3	(ii)	Attempt calculation of form $10 \times$ (answer to part i) $+k$ Obtain 55.8 or greater accuracy based on their part (i) -more than 3 s.f. acceptable	M1 A1ft [2]	implied by correct answer only or by answer following correctly from their incorrect part (i) ; any non-zero constant k following their answer to part (i) but A0 for $55.8+c$	allow attempt involving second use of Simpson's rule: M1 for complete correct expression, A1 for answer answer only 54.8 with no working earns M1A0 (as does 10 (their ans) +1); otherwise incorrect answer with no working earns $0 / 2$
4	(i)	Either: State $2 x^{3}+4=-50$ State -3 and no other	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		
		Or: Obtain $\sqrt[3]{\frac{1}{2}(x-4)}$ for inverse of f State -3 and no other	B1 B1 [2]	or equiv; using any letter	
4	(ii)	Show composition of functions the right way round Obtain $2 x-16$	M1 A1 [2]	AG; necessary detail needed	first step $2(x-10)+4$ acceptable but then two more steps needed

Question		Answer	Marks B1 M1	Guidance	
4	(iii)	Obtain $\sqrt[3]{2 x^{3}-6}$ or $\left(2 x^{3}-6\right)^{\frac{1}{3}}$ for $\operatorname{gf}(x)$ Apply chain rule to function which is cube root of a non-linear expression Obtain $2 x^{2}\left(2 x^{3}-6\right)^{-\frac{2}{3}}$		or unsimplified equiv condone incorrect constant; otherwise use of chain rule for their function must be correct or similarly simplified equiv; do not accept final answer with $\frac{6}{3}$ unsimplified	may use $u=2 x^{3}-6$; M1 earned for expression involving u .. in terms of x
5	(a)	Differentiate to produce $k \mathrm{e}^{-0.33 t}$ Obtain $-19.14 \mathrm{e}^{-0.33 t}$ or $19.14 \mathrm{e}^{-0.33 t}$ Obtain -5.1 or 5.1	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	where constant k is different from 58 or unsimplified equiv whatever they claim value represents; accept 5.11 but not greater accuracy	method must involve differentiation
5	(b)	Either: State or imply formula $42 \mathrm{e}^{k t}$ or $42 a^{t}$ Attempt to find k from $42 \mathrm{e}^{6 k}=51.8$ or a from $42 a^{6}=51.8$ Obtain $k=0.035$ or $a=1.0356$ Substitute 24 to obtain value between 97.1 and 97.3 inclusive	B1 M1 A1 A1	$42 \mathrm{e}^{-k t}, 42 \mathrm{e}^{-k x}$, etc. also acceptable using sound process involving logarithms at least as far as $6 k=\ldots$ or $a=\ldots$ or greater accuracy 0.03495 .. or exact equiv $\frac{1}{6} \ln \frac{37}{30}$ allow greater accuracy than 3 s.f.	
		Or: Use ratio $\frac{51.8}{42}$ in calculation Attempt calculation of form $42 \times r^{n}$ Obtain $42 \times\left(\frac{51.8}{42}\right)^{4}$ or $51.8 \times\left(\frac{51.8}{42}\right)^{3}$ Obtain value between 97.1 and 97.3 inclusive	B1 M1 A1 A1 [4]	allow greater accuracy than 3 s.f.	

Question			Answer	Marks	Guidance	
6	(i)		Draw inverted parabola roughly symmetrical about the y-axis and with maximum point more or less on y-axis State $y=9-x^{2}$ and indicate two intersections by marks on diagram or written reference to two intersections	M1 A1 [2]	drawing enough of the parabola that two intersections occur, ignoring their locations at this stage now needs second curve drawn so that right-hand intersection occurs in first quadrant	
6	(ii)	(a)	Calculate values of quartic expression for 2.1 and 2.2 Obtain $-1.9 \ldots$ and 1.6... and draw attention to sign change or clear equiv	M1 A1 [2]	if no explicit working seen, M1 is implied by at least one correct value; but if no explicit working seen and both values wrong, award M0	
6	(ii)	(b)	Obtain correct first iterate Carry out process to produce at least three iterates in all Obtain at least two more correct iterates Obtain 2.156	B1 M1 A1 A1 [4]	starting anywhere between -1 and 9 and showing at least 3 d.p. implied by plausible sequence of values; allow recovery after error showing at least 3 decimal places final answer needed to exactly 3 d.p.; not given for 2.156 as final iterate in sequence, i.e. needs indication (perhaps just underlining) that value of α found	$\begin{aligned} & 2.1 \rightarrow 2.15056 \rightarrow 2.15531 \rightarrow 2.15575 \rightarrow 2.15579 \\ & 2.15 \rightarrow 2.15526 \rightarrow 2.15574 \rightarrow 2.15579 \\ & 2.2 \rightarrow 2.15980 \rightarrow 2.15616 \rightarrow 2.15583 \rightarrow 2.15580 \end{aligned}$ answer only: 0/4

Question		Answer	Marks	Guidance	
7	(i)	Integrate to obtain $k(4 x+1)^{\frac{1}{2}}$ or $k u^{\frac{1}{2}}$ Obtain correct $\frac{1}{2} \sqrt{3}(4 x+1)^{\frac{1}{2}}$ or $\frac{1}{2} \sqrt{3} u^{\frac{1}{2}}$ Apply limits 0 and 20 and attempt subtraction of area of rectangle (or limits 1 and 81 if u involved) Obtain $4 \sqrt{3}-\frac{20}{9} \sqrt{3}$ and hence $\frac{16}{9} \sqrt{3}$	*M1 A1 M1 A1 [4]	any constant k or exact equiv dep ${ }^{*} \mathrm{M}$; or equiv such as including term $-\frac{1}{9} \sqrt{3}$ in the integration or finding $\int \frac{1}{9} \sqrt{3} \mathrm{~d} x$ separately; allow M1 if decimal values used here answer must be exact and a single term; $\frac{16}{9} \sqrt{3}+c$ as answer is final A0	Alternative: (region between curve and y-axis) Obtain equation $x=\frac{3}{4} y^{-2}-\frac{1}{4}$ B1 Integrate to obtain form $k_{1} y^{-1}+k_{2} y \quad * \mathrm{M} 1$ Apply limits $\frac{1}{9} \sqrt{3}$ and $\sqrt{3}$ the right way round Obtain $\frac{6}{\sqrt{3}}-\frac{8}{36} \sqrt{3}$ or better
	(ii)	State volume is $\pi \int \frac{3}{4 x+1} \mathrm{~d} x$ Obtain integral of form $k \ln (4 x+1)$ Obtain $\frac{3}{4} \pi \ln (4 x+1)$ or $\frac{3}{4} \ln (4 x+1)$ Apply limits to obtain $\frac{3}{4} \pi \ln 81$ or $\frac{3}{4} \ln 81$ Attempt to subtract volume of cylinder, using correct radius and ' height' Obtain $3 \pi \ln 3-\frac{20}{27} \pi$ or $\pi\left(\frac{3}{4} \ln 81-\frac{20}{27}\right)$	B1 M1 A1 A1 M1 A1 [6]	no need for limits here; condone absence of $d x$; condone absence of π here if it appears later in solution any constant k with or without π or exact equiv perhaps with $\ln 1$ present with exact volume of cylinder attempted or exact equiv involving two terms	allow B1 for $\int \pi y^{2}$ and $y^{2}=\frac{3}{4 x+1}$ stated if brackets missing, and subsequent calculation does not show their ' presence', marks are max B1M1A0A0M1A0 do not treat rotation around y-axis as mis-read: this is $0 / 6$

Question			Answer	Marks	Guidance	
8	(i)		Attempt use of quotient rule or equiv Obtain $\frac{2\left(x^{2}+5\right)-2 x(2 x+4)}{\left(x^{2}+5\right)^{2}}$ Obtain $-2 x^{2}-8 x+10=0$ Attempt solution of three-term quadratic equation based on numerator of derivative (even if their equation has no real roots) Obtain -5 and 1 Obtain ($-5,-\frac{1}{5}$) and $(1,1)$	M1 A1 A1 M1 A1 A1 [6]	condone one slip only but must be subtraction in numerator; condone absence of necessary brackets; or equiv or correct equiv; now with brackets as necessary or equiv involving three terms implied by no working but 2 correct values obtained Allow $-\frac{6}{30}$	correct numerator but error in denominator: max M1A0A1M1A1A1; numerator wrong way round: max M0A0A0M1A1A1 M1 for factorisation awarded if attempt is such that x^{2} term and one other term correct upon expansion; if formula used, M1 awarded as per Qn 2
	(ii)	(a)	Sketch (more or less) correct curve State values between 0 and their y-value of maximum point lying in first quadrant State correct $0 \leq y \leq 1$	B1 M1 A1ft [3]	showing negative part reflected in x-axis and positive part unchanged; ignore intercept values on axes, right or wrong accept \leq or $<$ signs here following their y-value of maximum point in first quadrant; now with \leq signs; or equiv perhaps involving g or $g(x)$	for " $y \geq 0$ and $y \leq 1$ ", award M1A1; for separate statements $y \geq 0, y \leq 1$, award M1A0
	(ii)	(b)	Indicate, in some way, values between y coordinates of maximum point and reflected minimum point (provided their y-coordinate of minimum point is negative) State $\frac{1}{5}<k<1$	M1 A1 [2]	allow $\leq \operatorname{sign}(\mathrm{s})$ here; could be clear indication on graph or correct equiv; not \leq now; correct answer only earns M1A1	for " $k>\frac{1}{5}$ and $k<1$ ", award M1A1; for separate statements, award M1A0

Question			Answer Simplify to obtain $\frac{11}{2} \cos \theta+\frac{5 \sqrt{3}}{2} \sin \theta$ Attempt correct process to find R Attempt correct process to find α Obtain $7 \sin (\theta+51.8)$	Marks B1 M1 M1 A1 [4]	Guidance	
9	(i)				or equiv with two terms perhaps with $\sin 60$ retained for expression of form $a \cos \theta+b \sin \theta$ for expression of form $a \cos \theta+b \sin \theta$; condone $\sin \alpha=\frac{11}{2}, \cos \alpha=\frac{5}{2} \sqrt{3}$ or greater accuracy 51.786...	accept decimal values obtained after initial simplification obtained after initial simplification
	(ii)	(a)	State stretch and translation in either order State stretch parallel to y-axis with factor $\frac{1}{7}$ State translation parallel to θ-axis or x-axis by 51.8 in positive direction or state translation by vector $\binom{51.8}{0}$	M1 A1ft A1ft	or equiv but using correct terminology, not move, squash, ... following their R and clearly indicating correct direction following their α and clearly indicating correct direction; or equiv such as 308.2 parallel to x-axis in negative direction	SC: if M0 but one transformation completely correct, award B1 for $1 / 3$
		(b)	State left-hand side (their R) $\sin \left(\frac{1}{3} \beta+\gamma\right.$) where $\gamma \neq \pm($ their $\alpha), \quad \gamma \neq \pm 40, \quad \gamma \neq \pm 20$ Obtain (their R) $\sin \left(\frac{1}{3} \beta+\right.$ their $\left.\alpha+20\right)=3$ Attempt correct process to find any value of $\frac{1}{3} \beta$ Attempt complete process to find positive value of β Obtain 248 or 249 or 248.5	M1 A1ft M1 M1 A1 [5]	or equiv such as stating $\theta=\frac{1}{3} \beta+20$ (and, in this case, allowing A1ft provided value of $\frac{1}{3} \beta$ attempted later) for equation of form $\sin \left(\frac{1}{3} \beta+\gamma\right)=k \text { where }\|k\|<1, k \neq 0$ including choosing second quadrant value of their $\sin ^{-1} \frac{3}{7}$ or greater accuracy $248.508 \ldots$	

