OCR Maths C3

Mark Scheme Pack

2005-2014

| 1 | (i)       | State $f(x) \le 10$                                   | B1         | 1 [Any equiv but must be or                                                       |
|---|-----------|-------------------------------------------------------|------------|-----------------------------------------------------------------------------------|
|   | (1)       | State $I(x) \leq 10$                                  |            | imply ≤]                                                                          |
|   | (ii)      | Attempt correct process for composition of functions  | M1         | [whether algebraic or numerical]                                                  |
|   |           | Obtain 6 or correct expression for $ff(x)$            | <b>A</b> 1 |                                                                                   |
|   |           | Obtain – 71                                           | <b>A</b> 1 | 3                                                                                 |
| 2 |           | Either Obtain $x = 0$                                 | B1         | [ignoring errors in working]                                                      |
|   |           | Form linear equation with signs of 6x and x different | M1         | [ignoring other sign errors]                                                      |
|   |           | State $6x - 1 = -x + 1$                               | A1         | [or correct equiv with or without brackets]                                       |
|   |           | Obtain $\frac{2}{7}$ and no other non-zero value      | A1         | 4 [or exact equiv]                                                                |
|   | <u>Or</u> | Obtain $36x^2 - 12x + 1 = x^2 - 2x + 1$               | B1         | [or equiv]                                                                        |
|   |           | Attempt to solve quadratic equation                   | M1         | [as far as factorisation or subn into formula]                                    |
|   |           | Obtain $\frac{2}{7}$ and no other non-zero value      | A1         | [or exact equiv]                                                                  |
|   |           | Obtain 0                                              | B1         | (4) [ignoring errors in working]                                                  |
| 3 | (i)       | Attempt solution involving (natural) logarithm        | M1         |                                                                                   |
|   |           | Obtain $-0.017t = \ln \frac{25}{180}$                 | A1         | [or equiv]                                                                        |
|   |           | Obtain 116                                            | <b>A</b> 1 | 3 [or greater accuracy rounding to 116]                                           |
|   | (ii)      | Differentiate to obtain $k e^{-0.017t}$               | M1         | [any constant <i>k</i> different from 180; solution must involve differentiation] |
|   |           | Obtain correct $-3.06e^{-0.017t}$                     | <b>A</b> 1 | [or unsimplified equiv; accept + or -]                                            |
|   |           | Obtain 1.2                                            | A1         | 3 [or greater accuracy; accept + or – answer]                                     |
| 4 | (a)       | State or imply $\int \pi y^2 dx$                      | B1         |                                                                                   |
|   |           | Integrate to obtain $k \ln x$                         | M1         | [any constant $k$ , involving $\pi$ or not; or equiv such as $k \ln 4x$ ]         |
|   |           | Obtain $4\pi \ln x$ or $4 \ln x$                      | A1         | [or equiv]                                                                        |
|   |           | Obtain $4\pi \ln 5$                                   | <b>A1</b>  | 4 [or similarly simplified equiv]                                                 |

|   | <b>(b)</b> | Attempt calculation involving attempts at <i>y</i> values                        | M1          | [with each of 1, 4, 2 present at least once as coefficients]                                             |
|---|------------|----------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------|
|   |            | Attempt $\frac{1}{3} \times 1(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$                   | M1          | [with attempts at five y values]                                                                         |
|   |            | Obtain $\frac{1}{3}(\sqrt{2} + 4\sqrt{5} + 2\sqrt{10} + 4\sqrt{17} + \sqrt{26})$ | <b>A</b> 1  | [or exact equiv or decimal equivs]                                                                       |
|   |            | Obtain 12.758                                                                    | <b>A</b> 1  | 4 [or greater accuracy]                                                                                  |
| 5 | (i)        | Obtain $R = \sqrt{13}$ , or 3.6 or 3.61 or greater accuracy                      | B1          |                                                                                                          |
|   |            | Attempt recognisable process for finding $\alpha$                                | M1          | [allow sine/cosine muddles]                                                                              |
|   |            | Obtain $\alpha = 33.7$                                                           | <b>A</b> 1  | 3 [or greater accuracy]                                                                                  |
|   | (ii)       | Attempt to find at least one value of $\theta + \alpha$                          | *M1         |                                                                                                          |
|   |            | Obtain value rounding to 76 or 104                                               | <b>A</b> 1√ | [following their <i>R</i> ]                                                                              |
|   |            | Subtract their $\alpha$ from at least one value                                  | M1          | [dependent on *M]                                                                                        |
|   |            | Obtain one value rounding to 42 or 43, or to 70                                  | <b>A</b> 1  |                                                                                                          |
|   |            | Obtain other value 42.4 or 70.2                                                  | A1          | 5 [or greater accuracy;<br>no other answers between 0<br>and 360;<br>ignore answers outside 0 to<br>360] |
| 6 | (a)        | Attempt use of product rule                                                      | *M1         |                                                                                                          |
|   |            | Obtain $\ln x + 1$                                                               | <b>A</b> 1  | [or unsimplified equiv]                                                                                  |
|   |            | Equate attempt at first derivative to zero and obtain value involving e          | M1          | [dependent on *M]                                                                                        |
|   |            | Obtain e <sup>-1</sup>                                                           | <b>A</b> 1  | 4 [or exact equiv]                                                                                       |
|   | <b>(b)</b> | Attempt use of quotient rule                                                     | M1          | [or equiv using product rule or                                                                          |
|   |            | Obtain $\frac{(4x-c)4-4(4x+c)}{(4x-c)^2}$                                        | <b>A</b> 1  | [or equiv]                                                                                               |
|   |            | Show that first derivative cannot be zero                                        | <b>A</b> 1  | 3 [AG; derivative must be correct]                                                                       |
| 7 | (i)        | State $2\cos^2 x - 1$                                                            | B1          | 1                                                                                                        |
|   | (ii)       | Attempt to express left hand side in terms of $\cos x$                           | M1          | [using expression of form $a\cos^2 x + b$ ]                                                              |
|   |            | Identify $\frac{1}{\cos x}$ as $\sec x$                                          | M1          | [maybe implied]                                                                                          |

|   |       | Confirm result                                                                 | <b>A</b> 1 | 3 [AG; necessary detail                                                                                                                                                                 |
|---|-------|--------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (222) |                                                                                |            | required]                                                                                                                                                                               |
|   | (iii) | Use identity $\sec^2 x = 1 + \tan^2 x$                                         | B1         |                                                                                                                                                                                         |
|   |       | Attempt solution of quadratic equation in tan <i>x</i>                         | M1         | [or equiv]                                                                                                                                                                              |
|   |       | Obtain $2 \tan^2 x + 3 \tan x - 9 = 0$ and hence $\tan x = -3$ , $\frac{3}{2}$ | A1         |                                                                                                                                                                                         |
|   |       | Obtain at least two of 0.983, 4.12, 1.89, 5.03                                 | <b>A</b> 1 | [allow answers with only 2 s.f.; allow greater accuracy; allow                                                                                                                          |
|   |       | (or of $0.313\pi$ , $1.31\pi$ , $0.602\pi$ , $1.60\pi$ )                       |            | $0.983 + \pi$ , $1.89 + \pi$ allow degrees: 56, 236, 108, 288]                                                                                                                          |
|   |       | Obtain all four solutions                                                      | <b>A</b> 1 | 5 [now with at least 3 s.f.; must be radians;                                                                                                                                           |
|   |       |                                                                                |            | no other solutions in the range $0 - 2\pi$ ,                                                                                                                                            |
|   |       |                                                                                |            | ignore solutions outside range $0 - 2\pi$ ]                                                                                                                                             |
| 8 | (i)   | Attempt relevant calculations with 5.2 and 5.3                                 | M1         |                                                                                                                                                                                         |
|   |       | Obtain correct values                                                          | <b>A</b> 1 | $x$ $y_1$ $y_2$ $y_1-y_2$                                                                                                                                                               |
|   |       | Conclude appropriately                                                         | <b>A</b> 1 | 5.2 2.83 2.87 -0.04 5.3 2.89 2.88 0.006  3 [AG; comparing y values or noting sign change in difference in y values or equiv]                                                            |
|   | (ii)  | Equate expressions and attempt rearrangement to $x =$                          | M1         |                                                                                                                                                                                         |
|   |       | Obtain $x = \frac{5}{3}\ln(3x + 8)$                                            | <b>A</b> 1 | 2 [AG; necessary detail required]                                                                                                                                                       |
|   | (iii) | Obtain correct first iterate                                                   | B1         |                                                                                                                                                                                         |
|   |       | Carry out correct process to find at least two iterates in all                 | M1         |                                                                                                                                                                                         |
|   |       | Obtain 5.29                                                                    | <b>A</b> 1 | 3 [must be exactly 2 decimal places;                                                                                                                                                    |
|   |       |                                                                                |            | 5.2\rightarrow 5.2832\rightarrow 5.2863\rightarrow 5.2869;<br>5.25\rightarrow 5.2855\rightarrow 5.2868\rightarrow 5.2870;<br>5.3\rightarrow 5.2877\rightarrow 5.2872\rightarrow 5.2871] |
|   | (iv)  | Obtain integral of form $k(3x+8)^{\frac{4}{3}}$                                | M1         |                                                                                                                                                                                         |
|   |       | Obtain integral of form $k e^{\frac{1}{5}x}$                                   | M1         |                                                                                                                                                                                         |

|   |       | Obtain $\frac{1}{4}(3x+8)^{\frac{4}{3}} - 5e^{\frac{1}{5}x}$            | <b>A</b> 1 | [or equiv]                                                              |
|---|-------|-------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|
|   |       | Apply limits 0 and their answer to (iii)                                | M1         | [applied to difference of two integrals]                                |
|   |       | Obtain 3.78                                                             | <b>A</b> 1 | 5 [or greater accuracy]                                                 |
| 9 | (i)   | Indicate stretch and (at least one) translation                         | M1         | [ in general terms]                                                     |
|   |       | State translation by 7 units in negative <i>x</i> direction             | <b>A</b> 1 | [or equiv; using correct terminology]                                   |
|   |       | State stretch in $x$ direction with factor $1/m$                        | A1         | [must follow the translation by 7; or equiv; using correct terminology] |
|   |       | Indicate translation by 4 units in negative <i>y</i> direction          | B1         | 4 [or equiv; at any stage; the two translations may be combined]        |
|   | (ii)  | Refer to each <i>y</i> value being image of unique <i>x</i> value       | B1         | [or equiv]                                                              |
|   |       | Attempt correct process for finding inverse                             | M1         |                                                                         |
|   |       | Obtain expression involving $(x+4)^2$ or $(y+4)^2$                      | M1         |                                                                         |
|   |       | Obtain $\frac{(x+4)^2 - 7}{m}$                                          | <b>A</b> 1 | 4 [or equiv]                                                            |
|   | (iii) | Refer to fact that curves are reflections of each other in line $y = x$ | B1         | [or equiv]                                                              |
|   |       | Attempt arrangement of either $f(x) = x$ or $f^{-1}(x) = x$             | M1         |                                                                         |
|   |       | Apply discriminant to resulting quadratic equati on                     | M1         |                                                                         |
|   |       | Obtain $(m-2)(m-14) < 0$                                                | <b>A</b> 1 | [or equiv]                                                              |
|   |       | Obtain $2 < m < 14$                                                     | <b>A</b> 1 | 5                                                                       |

- Obtain integral of form  $k \ln x$  M1 [any non-zero constant k; or equives such as  $k \ln 3x$ ]

  Obtain  $3 \ln 8 3 \ln 2$  A1 [or exact equives]

  Attempt use of at least one relevant log property M1 [would be earned by initial  $\ln x^3$ ]

  Obtain  $3 \ln 4$  or  $\ln 8^3 \ln 2^3$  and hence  $\ln 64$  A1 4 [AG; with no errors]
- - Obtain at least two correct answers

    Obtain all four of 45, 225, 71.6, 251.6

    A1 [after correct solution of eqn]

    A1 5 [allow greater accuracy or angles to nearest degree and no other answers between 0 and 360]
- 3 (a) Attempt use of product rule Obtain  $2x(x+1)^6$  ...

  Obtain  $... + 6x^2(x+1)^5$ A1 3 [or equivs; ignore subsequent attempt at simplification]
  - (b) Attempt use of quotient rule

    M1 [or, with adjustment, product rule; allow u/v confusion ]

    Obtain  $\frac{(x^2-3)2x-(x^2+3)2x}{(x^2-3)^2}$ A1 [or equiv]

    Obtain -3

    A1 3 [from correct derivative only]
- 4 (i) State  $y \le 2$  B1 1 [or equiv; allow <; allow any letter or none]
  - (ii) Show correct process for composition of functions Obtain 0 and hence 2 A1 2 [and no other value]
- (iii) State a range of values with 2 as one end-point M1 [continuous set, not just integers] State  $0 < k \le 2$  [with correct < and  $\le$  now]
- Obtain integral of form  $k(1-2x)^6$ 5 M1[any non-zero constant k] Obtain correct  $-\frac{1}{12}(1-2x)^6$ [or unsimplified equiv; allow + c] **A1** Use limits to obtain  $\frac{1}{12}$ **A1** [or exact (unsimplified) equiv] Obtain integral of form  $k e^{2x-1}$ **M1** [or equiv; any non-zero constant k] Obtain correct  $\frac{1}{2}e^{2x-1} - x$ **A1** [or equiv; allow + c] Use limits to obtain  $-\frac{1}{2}e^{-1}$ **A1** [or exact (unsimplified) equiv] Show correct process for finding required area **M1** [at any stage of solution; if process involves two definite integrals, second must be negative] Obtain  $\frac{1}{12} + \frac{1}{2}e^{-1}$ **A1 8** [or exact equiv; no + c]

**6 (a)** Either: State proportion  $\frac{440}{275}$ Attempt calculation involving

proportion M1 [involving multn and X value]

**B1** 

Obtain 704 A1 3 Or: Use formula of form  $275e^{kt}$  or  $275a^t$  M1 [or equiv]

> Obtain k = 0.047 or  $a = \sqrt[10]{1.6}$  **A1** [or equiv] Obtain 704 **A1** (3) [allow  $\pm 0.5$ ]

(b)(i) Attempt correct process involving logarithm M1 [or equiv including systematic trial and improvement attempt]

Obtain  $\ln \frac{20}{80} = -0.02t$  **A1** [or equiv]

Obtain 69 A1 3 [or greater accuracy; scheme for T&I: M1A2]

(ii) Differentiate to obtain  $k e^{-0.02t}$  M1 [any constant k different from 80]

Obtain  $-1.6e^{-0.02t}$  (or  $1.6e^{-0.02t}$ ) **A1** [or unsimplified equiv]

Obtain 0.88 A1 3 [or greater accuracy; allow -0.88]

\_\_\_\_\_

(i) Sketch curve showing (at least) translation in x direction M1 [either positive or negative]

Show correct sketch with one of 2 and  $3\pi$  indicated A1

... and with other one of 2 and  $3\pi$  indicated

(ii) Draw straight line through *O* with positive gradient B1 1 [label and explanation not required]

(iii) Attempt calculations using 1.8 and 1.9 M1 [allow here if degrees used]

Obtain correct values and indicate change of sign

A1 2 [or equiv; x = 1.8: LHS = 1.93, diff = 0.13; x = 1.9: LHS = 1.35, diff = -0.55;

A1 3

radians needed now]

(iv) Obtain correct first iterate 1.79 or 1.78 **B1** [or greater accuracy] Attempt correct process to produce

at least 3 iterates M1
Obtain 1.82 A1 [answer required to exactly 2 d.p.;  $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200$ :

 $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200;$ SR: answer 1.82 only - B2] Attempt rearrangement of  $3\cos^{-1}(x-1) = x$ 

or of  $x = 1 + \cos(\frac{1}{3}x)$  [involving at least two steps]

Obtain required formula or equation respectively

A1 5

| 8 | (i)   | Differentiate to obtain $kx(5-x^2)^{-1}$                                         | M1          |   | [any non-zero constant]                                              |
|---|-------|----------------------------------------------------------------------------------|-------------|---|----------------------------------------------------------------------|
|   |       | Obtain correct $-2x(5-x^2)^{-1}$                                                 | <b>A1</b>   |   | [or equiv]                                                           |
|   |       | Obtain -4 for value of derivative                                                | <b>A1</b>   |   |                                                                      |
|   |       | Attempt equation of straight line through (2, 0) value of gradient obtained from | with        |   |                                                                      |
|   |       | attempt at derivative                                                            | M1          |   | [not for attempt at eqn of normal]                                   |
|   |       | Obtain $y = -4x + 8$                                                             | A1          | 5 | [or equiv]                                                           |
|   | (ii)  | State or imply $h = \frac{1}{2}$                                                 | <b>B</b> 1  |   |                                                                      |
|   |       | Attempt calculation involving attempts                                           |             |   |                                                                      |
|   |       | at y values                                                                      | M1          |   | [addition with each of coefficients 1, 2, 4 occurring at least once] |
|   |       | Obtain $k(\ln 5 + 4\ln 4.75 + 2\ln 4 + 4\ln 2.75 + \ln 1)$                       | A1          |   | [or equiv perhaps with decimals; any constant <i>k</i> ]             |
|   |       | Obtain 2.44                                                                      | A1          | 4 | [allow ±0.01]                                                        |
| ( | (iii) | Attempt difference of two areas                                                  | M1          |   | [allow if area of their triangle < area A]                           |
|   |       | Obtain $8 - 2.44$ and hence $5.56$                                               | <b>A1</b> \ | 2 | [following their tangent and area of A providing answer positive]    |
|   |       |                                                                                  |             |   | ir pro rumg uno nor positivoj                                        |

\_\_\_\_\_

| 9 | <b>(i)</b> | State $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$        | <b>B1</b>  |   |                                                                         |
|---|------------|--------------------------------------------------------------------|------------|---|-------------------------------------------------------------------------|
|   |            | Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and |            |   |                                                                         |
|   |            | $\cos 2\theta = 1 - 2\sin^2 \theta$                                | <b>B1</b>  |   |                                                                         |
|   |            | Attempt complete process to express                                |            |   |                                                                         |
|   |            | in terms of $\sin \theta$                                          | <b>M1</b>  |   | [using correct identities]                                              |
|   |            | Obtain $3 \sin \theta - 4 \sin^3 \theta$                           | A1         | 4 | [AG; all correctly obtained]                                            |
|   | (ii)       | State 3                                                            | <b>B1</b>  |   |                                                                         |
|   | ` /        | Obtain expression involving $\sin 10\alpha$                        | <b>M1</b>  |   | [allow $\theta/\alpha$ confusion]                                       |
|   |            | Obtain 9                                                           | <b>A1</b>  | 3 | [and no other value]                                                    |
|   |            | 1                                                                  |            |   |                                                                         |
| ( | (iii)      | Recognise cosec $2\beta$ as $\frac{1}{\sin 2\beta}$                | <b>B</b> 1 |   | [allow $\theta/\beta$ confusion]                                        |
|   |            | Attempt to express equation in terms                               |            |   |                                                                         |
|   |            | of $\sin 2\beta$ only                                              | <b>M1</b>  |   | [or equiv involving $\cos 2\beta$ ]                                     |
|   |            | Attempt to find non-zero value of $\sin 2\beta$                    | <b>M1</b>  |   | [or of $\cos 2\beta$ ]                                                  |
|   |            | Obtain at least $\sin 2\beta = \sqrt{\frac{5}{12}}$                | <b>A1</b>  |   | [or equiv, exact or approx]                                             |
|   |            | Attempt correct process to find two values of $\beta$              | M1         |   | [provided equation is $\sin 2\beta = k$ ; or equiv with $\cos 2\beta$ ] |
|   |            | Obtain 20.1, 69.9                                                  | <b>A1</b>  | 6 | [and no others between 0 and 90]                                        |

| 1 |      | Differe          | ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$                  | M1              |             | any non-zero constant <i>k</i>                                                        |
|---|------|------------------|------------------------------------------------------------|-----------------|-------------|---------------------------------------------------------------------------------------|
|   |      | Obtain           | $2(4x+1)^{-\frac{1}{2}}$                                   | <b>A</b> 1      |             | or equiv, perhaps unsimplified                                                        |
|   |      |                  | $\frac{2}{3}$ for value of first derivative                | <b>A1</b>       |             | or unsimplified equiv                                                                 |
|   |      | Attemp           | ot equation of tangent through (2, 3)                      | М1              |             | using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$ |
| _ |      | Obtain           | $y = \frac{2}{3}x + \frac{5}{3}$ or $2x - 3y + 5 = 0$      | <b>A</b> 1      | 5           | or equiv involving 3 terms                                                            |
| 2 |      | Either:          | Attempt to square both sides                               | M1              |             | producing 3 terms on each side                                                        |
|   |      |                  | Obtain $3x^2 - 14x + 8 = 0$                                | <b>A</b> 1      |             | or inequality involving < or >                                                        |
|   |      |                  | Obtain correct values $\frac{2}{3}$ and 4                  | <b>A1</b>       |             |                                                                                       |
|   |      |                  | Attempt valid method for solving inequality                | M1              |             | implied by correct answer or plausible incorrect answer                               |
|   |      |                  | Obtain $\frac{2}{3} < x < 4$                               | <b>A1</b>       | 5           | or correctly expressed equiv;                                                         |
|   |      |                  |                                                            |                 |             | allow ≤ signs                                                                         |
|   |      | <u>Or</u> :      | Attempt solution of two linear equations or inequalities   | <b>M</b> 1      |             | one eqn with signs of 2x and x the same, second eqn with signs different              |
|   |      |                  | Obtain value $\frac{2}{3}$                                 | <b>A1</b>       |             |                                                                                       |
|   |      |                  | Obtain value 4                                             | В1              |             |                                                                                       |
|   |      |                  | Attempt valid method for solving inequality                | М1              |             | implied by correct answer or plausible incorrect answer                               |
|   |      |                  | Obtain $\frac{2}{3} < x < 4$                               | <b>A</b> 1      | <b>(</b> 5) | or correctly expressed equiv;                                                         |
|   |      |                  |                                                            |                 |             | allow ≤ signs                                                                         |
| 3 | (i)  | Obtain           | ot evaluation of cubic expression at 2 and 3<br>—11 and 31 | M1<br>A1        |             |                                                                                       |
|   |      | Conclu           | ide by noting change of sign                               | A1 <sup>-</sup> | v 3         | or equiv; following any calculated values provided negative then positive             |
|   | (ii) | Obtain           | correct first iterate                                      | В1              |             | using $x_1$ value such that $2 \le x_1 \le 3$                                         |
|   |      | Attemp<br>Obtain | ot correct process to obtain at least 3 iterates 2.34      | M1<br>A1        | 3           | using any starting value now answer required to 2 d.p. exactly;                       |

2→2.3811→2.3354→2.3410; 2.5→2.3208→2.3428→2.3401; 3→2.2572→2.3505→2.3392 **4** (i) State  $\ln y = (x-1)\ln 5$ 

Obtain  $x = 1 + \frac{\ln y}{\ln 5}$ 

- **B1** whether following  $\ln y = \ln 5^{x-1}$  or not; brackets needed
- **B1 2 AG**; correct working needed; missing brackets maybe now implied
- (ii) Differentiate to obtain single term of form  $\frac{k}{-}$  M1

**A1 2** or equiv involving y

any constant k

- Obtain  $\frac{1}{y \ln 5}$ (iii) Substitute for y and attempt reciprocal
- М1 or equiv method for finding derivative without using part (ii)

Obtain 25 ln 5

A1 2 or exact equiv

(i) State  $\sin 2\theta = 2 \sin \theta \cos \theta$ 

- **B1 1** or equiv; any letter acceptable here (and in parts (ii) and (iii))
- (ii) Attempt to find exact value of  $\cos \alpha$

Obtain  $\frac{1}{4}\sqrt{15}$ Substitute to confirm  $\frac{1}{6}\sqrt{15}$ 

- **M**1 using identity attempt or rightangled triangle
- Α1 or exact equiv
- A1 3 AG

(iii) State or imply  $\sec \beta = \frac{1}{\cos \beta}$ 

Use identity to produce equation involving  $\sin \beta$ Obtain  $\sin \beta = 0.3$  and hence 17.5

- **B1** M1
  - A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

**6 (i)** Either: Obtain f(-3) = -7

Show correct process for compn of functions M1 Obtain -47 A1 3

- maybe implied
- <u>Or</u>: Show correct process for compn of functions M1 Obtain  $2 - (2 - x^2)^2$

using algebraic approach Α1 or equiv

- Obtain -47

A1 (3)

М1

- (ii) Attempt correct process for finding inverse Obtain either one of  $x = \pm \sqrt{2 - y}$ or both Obtain correct  $-\sqrt{2-x}$
- Α1 or equiv perhaps involving x A1 3 or equiv; in terms of x now
- (iii) Draw graph showing attempt at reflection in y = xDraw (more or less) correct graph

М1 Α1 with end-point on x-axis and no minimum point in third quadrant

as far as x = ... or equiv

Indicate coordinates 2 and  $-\sqrt{2}$ 

**A1** 3 accept –1.4 in place of  $-\sqrt{2}$ 

**7 (a)** Obtain integral of form  $k(4x-1)^{-1}$ 

М1 any non-zero constant k

|     | Obtain $-\frac{1}{2}(4x-1)^{-1}$<br>Substitute limits and attempt evaluation<br>Obtain $\frac{2}{21}$                                                         | A1<br>M1<br>A1 4       | or equiv; allow + $c$ for any expression of form $k'(4x-1)^n$ or exact equiv                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| (b  | Substitute limits to obtain In 2a – In a Subtract integral attempt from attempt at area                                                                       | B1<br>B1               | ar aguitu                                                                                                               |
|     | of appropriate rectangle<br>Obtain 1 – (ln 2 $a$ – ln $a$ )<br>Show at least one relevant logarithm property<br>Obtain 1 – ln 2 and hence $\ln(\frac{1}{2}e)$ | M1<br>A1<br>M1<br>A1 6 | or equiv or equiv at any stage of solution AG; full detail required                                                     |
| 8 ( | State $R = 13$                                                                                                                                                | B1                     | or equiv                                                                                                                |
|     | State at least one equation of form $R \cos \alpha = k$ , $R \sin \alpha = k'$ , $\tan \alpha = k''$                                                          | M1                     | or equiv; allow sin / cos                                                                                               |
|     | Obtain 67.4                                                                                                                                                   | A1 3                   | muddles; implied by correct $\alpha$ allow 67 or greater accuracy                                                       |
| (i  | Refer to translation and stretch                                                                                                                              | M1                     | in either order; allow here equiv<br>terms such as 'move', 'shift';<br>with both transformations<br>involving constants |
|     | State translation in positive x direction by 67.4                                                                                                             | <b>A1</b> √            | or equiv; following their $\alpha$ ; using                                                                              |
|     | State stretch in <i>y</i> direction by factor 13                                                                                                              | <b>A</b> 1√ 3          | correct terminology now  or equiv; following their <i>R</i> ; using correct terminology now                             |
| (ii | Attempt value of $\cos^{-1}(2 \div R)$                                                                                                                        | M1                     |                                                                                                                         |
|     | Obtain 81.15<br>Obtain 148.5 as one solution                                                                                                                  | A1√<br>A1              | following their R; accept 81 accept 148.5 or 148.6 or value rounding to either of these                                 |
|     | Add their $\alpha$ value to second value correctly attempted                                                                                                  | M1                     |                                                                                                                         |
|     | Obtain 346.2                                                                                                                                                  |                        | accept 346.2 or 346.3 or value rounding to either of these; and no other solutions                                      |

Obtain  $x = e^{\frac{1}{2}y} + 1$ 

State or imply volume involves  $\int \pi x^2$ 

Attempt to express  $x^2$  in terms of y

Obtain  $k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$ 

Integrate to obtain  $k(e^y + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and p

Obtain  $\pi(e^p + 4e^{\frac{1}{2}p} + p - 5)$ 

(ii) State or imply  $\frac{\mathrm{d}p}{\mathrm{d}t} = 0.2$ 

Obtain  $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$  as derivative of VAttempt multiplication of values or expressions

for  $\frac{\mathrm{d}p}{\mathrm{d}t}$  and  $\frac{\mathrm{d}V}{\mathrm{d}p}$ 

Obtain  $0.2\pi(e^4 + 2e^2 + 1)$ 

Obtain 44

A1 or equiv

**B1** 

\*M1 dep \*M; expanding to produce at least 3 terms

**A1** any constant *k* including 1; allow if dy absent

**A**1

M1 dep \*M \*M; evidence of use of 0 needed

A1 8 AG; necessary detail required

**B1** maybe implied by use of 0.2 in product

**B**1

M1

**A1** $\sqrt{\frac{dV}{dp}}$  expression

A1 5 or greater accuracy

M1

1 Attempt use of quotient rule to find derivative allow for numerator 'wrong way round'; or attempt use of product rule

Obtain 
$$\frac{2(3x-1)-3(2x+1)}{(3x-1)^2}$$

**A**1 or equiv

Obtain  $-\frac{5}{4}$  for gradient

**A**1 or equiv

Attempt eqn of straight line with numerical gradient

obtained from their  $\frac{dy}{dx}$ ; tangent not normal

Obtain 5x + 4y - 11 = 0

5 or similar equiv

Attempt complete method for finding  $\cot \theta$ 2 (i) Obtain  $\frac{5}{12}$ 

M1rt-angled triangle, identities, calculator, ... A1 2 or exact equiv

Attempt relevant identity for  $\cos 2\theta$ (ii)

 $+2\cos^{2}\theta + 1$  or  $+1 + 2\sin^{2}\theta$  or M1 $\pm(\cos^2\theta-\sin^2\theta)$ 

State correct identity with correct value(s) substituted Obtain  $-\frac{119}{169}$ 

A<sub>1</sub>

A1 3 correct answer only earns 3/3

3 (a) Sketch reasonable attempt at  $y = x^5$ 

\*B1 accept non-zero gradient at O but curvature to be correct in first and third quadrants

Sketch straight line with negative gradient Indicate in some way single point of intersection B1 3 dep \*B1 \*B1

existing at least in (part of) first quadrant

**(b)** Obtain correct first iterate

Carry out process to find at least 3 iterates in all M1 Obtain at least 1 correct iterate after the first

B1 allow if not part of subsequent iteration

allow for recovery after error; showing at least 3 d.p. in iterates

Conclude 2.175

A1 4 answer required to precisely 3 d.p.

 $[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.17480 \rightarrow 2.17479;$  $1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 \rightarrow 2.17479$ ;

 $2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.17479 \rightarrow 2.17479$ ;

 $3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17479 \rightarrow 2.17479$ 

Obtain derivative of form  $k(4t+9)^{-\frac{1}{2}}$ 4 (i)

M1 any constant k Obtain correct  $2(4t+9)^{-\frac{1}{2}}$ **A**1

or (unsimplified) equiv Obtain derivative of form  $k e^{\frac{1}{2}x+1}$ 

M1any constant k different from 6

Obtain correct  $3e^{\frac{1}{2}x+1}$ A1 4 or equiv

Either: Form product of two derivatives M1 (ii) Substitute for t and x in product M1 Obtain 39.7

numerical or algebraic using t = 4 and calculated value of x 3 allow  $\pm 0.1$ ; allow greater accuracy

Obtain  $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ Or: Obtain correct  $6(4t+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ 

differentiating  $y = 6e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ M1

Substitute t = 4 to obtain 39.7 A1 (3) allow  $\pm 0.1$ ; allow greater accuracy

**A**1 or equiv

Obtain  $R = \sqrt{17}$  or 4.12 or 4.1

**B**1 or greater accuracy

Attempt recognisable process for finding  $\alpha$ Obtain  $\alpha = 14$ 

M1allow for sin/cos confusion

**3** or greater accuracy 14.036...

(ii) Attempt to find at least one value of θ + α M1
 Obtain or imply value 61 A1√ following R value; or value rounding to 61
 Obtain 46.9 A1 allow ±0.1; allow greater accuracy
 Show correct process for obtaining second angle M1
 Obtain -75 A1 5 allow ±0.1; allow greater accuracy; max of 4/5 if extra angles between -180 and 180

-----

- 6 (i) Obtain integral of form  $k(3x+2)^{\frac{1}{2}}$  M1 any constant kObtain correct  $\frac{2}{3}(3x+2)^{\frac{1}{2}}$  A1 or equiv
  Substitute limits 0 and 2 and attempt evaluation M1 for integral of form  $k(3x+2)^n$ Obtain  $\frac{2}{3}(8^{\frac{1}{2}}-2^{\frac{1}{2}})$  A1 4 or exact equiv suitably simplified
  - (ii) State or imply  $\pi \int \frac{1}{3x+2} dx$  or unsimplified version B1 allow if dx absent or wrong Obtain integral of form  $k \ln(3x+2)$  M1 any constant k involving  $\pi$  or not Obtain  $\frac{1}{3}\pi \ln(3x+2)$  or  $\frac{1}{3}\ln(3x+2)$  A1 Show correct use of  $\ln a \ln b$  property M1 Obtain  $\frac{1}{3}\pi \ln 4$  A1 5 or (similarly simplified) equiv

\_\_\_\_\_

- 7 (i) State a in x-direction B1 or clear equiv State factor 2 in x-direction B1 2 or clear equiv
  - (ii) Show (largely) increasing function crossing *x*-axis
    Show curve in first and fourth quadrants only
    A1

    M1 with correct curvature
    not touching *y*-axis and with no maximum
    point; ignore intercept
  - (iii) Show attempt at reflecting negative part in x-axis Show (more or less) correct graph M1 A1 $\sqrt{2}$  following their graph in (ii) and showing correct curvatures
  - (iv) Identify 2a as asymptote or 2a + 2 as intercept B1 allow anywhere in question State  $2a < x \le 2a + 2$  B1 2 allow < or  $\le$  for each inequality

8 (i) Obtain  $-2xe^{-x^2}$  as derivative of  $e^{-x^2}$  B1

Attempt product rule \*M1 allow if sign errors or no chain rule

Obtain  $8x^7e^{-x^2} - 2x^9e^{-x^2}$  A1 or (unsimplified) equiv

Either: Equate first derivative to zero and attempt solution M1 dep \*M; taking at least one step of solution

Confirm 2

Or: Substitute 2 into derivative and show

attempt at evaluation M1

Obtain 0 A1 (5) AG; necessary correct detail required

**A**1

(ii) Attempt calculation involving attempts at y values M1with each of 1, 4, 2 present at least once as coefficients

Attempt  $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$ 

with attempts at five y values corresponding M1

or equiv with at least 3 d.p. or exact values

to correct x values

Obtain  $\frac{1}{6}(0 + 4 \times 0.00304 + 2 \times 0.36788$ 

$$+4 \times 2.70127 + 4.68880$$
)

Obtain 2.707

4 or greater accuracy; allow  $\pm 0.001$ **A**1

(iii) Attempt 4(y value) - 2(part (ii))

Obtain 13.3

M1or equiv

**A**1 2 or greater accuracy; allow  $\pm 0.1$ 

State  $y \le 4$ 

9 (i)

State  $-2 \le y \le 2$ 

allow <; any notation B1

2 allow <; any notation

Show correct process for composition M1A1

Obtain or imply 0.959 and hence 2.16

Obtain g(0.5) = 3.5Observe that 3.5 not in domain of f right way round

AG; necessary detail required or (unsimplified) equiv

B1 4 or equiv

or equiv

(iii) Relate quadratic expression to at least one end

of range of f

Obtain both of  $4 - 2x^2 < -2$  and  $4 - 2x^2 > 2$ 

or equiv; allow any sign in each (< or  $\le$  or >**A**1

 $or \ge or =)$ 

Obtain at least two of the x values  $-\sqrt{3}$ , -1, 1,  $\sqrt{3}$  A1

Obtain all four of the *x* values

Attempt solution involving four *x* values M1

Obtain  $x < -\sqrt{3}$ , -1 < x < 1,  $x > \sqrt{3}$ 

to produce at least two sets of values

A1 **6** allow  $\leq$  instead of < and/or  $\geq$  instead of >

| 1 (i) | Attempt use of product rule                                                                                        | M1         |      |                                                   |
|-------|--------------------------------------------------------------------------------------------------------------------|------------|------|---------------------------------------------------|
| 1 (1) | Obtain $3x^{2}(x+1)^{5} + 5x^{3}(x+1)^{4}$                                                                         | A1         |      | 2 or equiv                                        |
|       | [Or: (following complete expansion and differentiati                                                               |            | rm b | •                                                 |
|       | Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$                                                               | В2         |      | allow B1 if one term incorrect]                   |
| (ii)  | Obtain derivative of form $kx^3(3x^4+1)^n$                                                                         | M1         |      | any constants $k$ and $n$                         |
|       | Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$                                                            | M1         |      | ·                                                 |
|       | Obtain correct $6x^{3}(3x^{4}+1)^{-\frac{1}{2}}$                                                                   | A1         |      | 3 or (unsimplified) equiv                         |
|       | Obtain correct of $(3x + 1)$                                                                                       | А          |      | or (unsimplified) equiv                           |
|       |                                                                                                                    |            |      |                                                   |
| 2     | Identify critical value $x = 2$                                                                                    | B1         |      |                                                   |
|       | Attempt process for determining both critical values                                                               | M1         |      |                                                   |
|       | Obtain $\frac{1}{3}$ and 2                                                                                         | A1         |      |                                                   |
|       | Attempt process for solving inequality                                                                             | M1         |      | table, sketch;                                    |
|       |                                                                                                                    |            |      | implied by plausible answer                       |
|       | Obtain $\frac{1}{3} < x < 2$                                                                                       | A1         | 5    |                                                   |
|       |                                                                                                                    |            |      |                                                   |
| 3 (i) | Attempt correct process for composition                                                                            | M1         |      | numerical or algebraic                            |
| J (1) | Obtain (16 and hence) 7                                                                                            | A1         | 2    | numerical of algebraic                            |
|       |                                                                                                                    |            |      |                                                   |
| (ii)  | Attempt correct process for finding inverse                                                                        | M1         | _    | maybe in terms of y so far                        |
|       | Obtain $(x-3)^2$                                                                                                   | A1         | 2    | or equiv; in terms of $x$ , not $y$               |
| (iii) | Sketch (more or less) correct $y = f(x)$                                                                           | В1         |      | with 3 indicated or clearly implied               |
| ( )   | ( )                                                                                                                |            |      | on y-axis, correct curvature, no                  |
|       |                                                                                                                    |            |      | maximum point                                     |
|       | Sketch (more or less) correct $y = f^{-1}(x)$                                                                      | B1         | •    | right hand half of parabola only                  |
|       | State reflection in line $y = x$                                                                                   | B1         | 3    | or (explicit) equiv; independent of earlier marks |
|       |                                                                                                                    |            |      | carner marks                                      |
|       | 4                                                                                                                  |            |      |                                                   |
| 4 (i) | Obtain integral of form $k(2x+1)^{\frac{4}{3}}$                                                                    | M1         |      | or equiv using substitution;                      |
|       | ,                                                                                                                  |            |      | any constant k                                    |
|       | Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$                                                                   | <b>A</b> 1 |      | or equiv                                          |
|       | Substitute limits in expression of form $(2x+1)^n$                                                                 |            |      |                                                   |
|       | and subtract the correct way round                                                                                 | M1         |      | using adjusted limits if subn used                |
|       | Obtain 30                                                                                                          | A1         | 4    |                                                   |
| (ii)  | Attempt evaluation of $k(y_0 + 4y_1 + y_2)$                                                                        | M1         |      | any constant k                                    |
| . ,   | Identify k as $\frac{1}{3} \times 6.5$                                                                             | A1         |      | ,                                                 |
|       | Obtain 29.6                                                                                                        | A1         | 3    | or greater accuracy (29.554566)                   |
|       | [SR: (using Simpson's rule with 4 strips)                                                                          | . 11       | 3    | 5. States accuracy (27.554500)                    |
|       | Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$ | )          |      |                                                   |
|       | and hence 29.9                                                                                                     | B1         |      | or greater accuracy (29.897)]                     |

| 5 (i)         | State e           | $^{-0.04t} = 0.5$                                            | B1                  |      | or equiv                                                                                          |
|---------------|-------------------|--------------------------------------------------------------|---------------------|------|---------------------------------------------------------------------------------------------------|
| <b>3</b> (I)  |                   | t solution of equation of form $e^{-0.04t} = k$              | M1                  |      | using sound process; maybe                                                                        |
|               | rttemp            | t solution of equation of form c — x                         | 1411                |      | implied                                                                                           |
|               | Obtain            | 17                                                           | A1                  | 3    | or greater accuracy (17.328)                                                                      |
| (ii)          | Differe           | ntiate to obtain form $k e^{-0.04t}$                         | *M1                 |      | constant <i>k</i> different from 240                                                              |
|               | Obtain            | $(\pm) 9.6e^{-0.04t}$                                        | A1                  |      | or (unsimplified) equiv                                                                           |
|               |                   | attempt at first derivative to (±) 2.1 and                   |                     |      |                                                                                                   |
|               | attempt<br>Obtain | solution<br>38                                               | M1<br>A1            | 4    | dep *M; method maybe implied or greater accuracy (37.9956)                                        |
| 6 (i)         | Obtain            | integral of form $k_1 e^{2x} + k_2 x^2$                      | M1                  |      | any non-zero constants $k_1, k_2$                                                                 |
| , ,           |                   | correct $3e^{2x} + \frac{1}{2}x^2$                           | A1                  |      | 1. 2                                                                                              |
|               |                   | $3e^{2a} + \frac{1}{2}a^2 - 3$                               | A1                  |      |                                                                                                   |
|               |                   | definite integral to 42 and attempt                          | AI                  |      |                                                                                                   |
|               | _                 | ngement                                                      | M1                  |      | using sound processes                                                                             |
|               |                   | $a = \frac{1}{2}\ln(15 - \frac{1}{6}a^2)$                    | <b>A</b> 1          | 5    | AG; necessary detail required                                                                     |
| (ii)          | Obtain            | correct first iterate 1.348                                  | B1                  |      |                                                                                                   |
| ` ′           |                   | t correct process to find at least                           |                     |      |                                                                                                   |
|               | 2 iterate         | es<br>at least 3 correct iterates                            | M1<br>A1            |      |                                                                                                   |
|               | Obtain            |                                                              | A1                  | 4    | answer required to exactly 3 d.p.;                                                                |
|               |                   | $[1 \to 1.34844 \to 1.3438$                                  | $2 \rightarrow 1$ . | .343 | allow recovery after error [889]                                                                  |
| 7 (i)         | Show              | orrect general shape (alternating above                      |                     |      |                                                                                                   |
| , (I)         |                   | ow x-axis)                                                   | M1                  |      | with no branch reaching <i>x</i> -axis                                                            |
|               | Draw (1           | more or less) correct sketch                                 | A1                  | 2    | with at least one of 1 and -1 indicated or clearly implied                                        |
| ( <b>ii</b> ) | Attemn            | t solution of $\cos x = \frac{1}{3}$                         | M1                  |      | maybe implied; or equiv                                                                           |
| (11)          |                   | 1.23 or $0.392\pi$                                           | A1                  |      | or greater accuracy                                                                               |
|               |                   | 5.05 or $1.61\pi$                                            | A1                  | 3    | or greater accuracy and no others within $0 \le x \le 2\pi$ ; penalise answer(s) to 2sf only once |
| (iii)         | Either:           | Obtain $\tan \theta = 5$                                     | any<br>A1           | con  | stant k; maybe implied                                                                            |
|               |                   | Obtain two values only of form $\theta$ , $\theta + \pi$     | M1                  |      | within $0 \le x \le 2\pi$ ; allow degrees at this stage                                           |
|               |                   | Obtain 1.37 and 4.51 (or $0.437\pi$                          | A 1                 | 4    |                                                                                                   |
|               |                   | and $1.44\pi$ )                                              | A1                  | 4    | allow ±1 in third sig fig; or greater accuracy                                                    |
|               | <u>Or</u> :       | (for methods which involve squaring, etc.)                   | <b>N</b> // 1       |      |                                                                                                   |
|               |                   | Attempt to obtain eqn in one trig ratio Obtain correct value | M1<br>A1            |      | $\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}, \dots$                                         |
|               |                   | Attempt solution at least to find one                        | ΑI                  |      | $U = 25, \cos U = \frac{1}{26}, \dots$                                                            |
|               |                   | value in first quadrant and one value                        |                     |      |                                                                                                   |
|               |                   | in third                                                     | M1                  |      |                                                                                                   |
|               |                   | Obtain 1.37 and 4.51 (or equivs as above)                    | A1                  |      | ignoring values in second and fourth                                                              |
|               |                   | (or equivo as above)                                         | ΛI                  |      | andrants                                                                                          |

quadrants

| 8 | <b>(i)</b> | Attempt use of quotient rule                  |
|---|------------|-----------------------------------------------|
|   |            | $(4 \ln x + 3)^{\frac{4}{3}} - (4 \ln x - 3)$ |

**June 2007** 

Obtain 
$$\frac{(4 \ln x + 3) \frac{4}{x} - (4 \ln x - 3) \frac{4}{x}}{(4 \ln x + 3)^2}$$

Confirm 
$$\frac{24}{x(4\ln x + 3)^2}$$

A1 3 AG; necessary detail required

(ii) Identify 
$$\ln x = \frac{3}{4}$$

State or imply 
$$x = e^{\frac{3}{4}}$$

**B**1

Substitute e<sup>k</sup> completely in expression for derivative

and deal with  $\ln e^k$  term M1

Obtain  $\frac{2}{3}e^{-\frac{3}{4}}$ 

**A**1 4 or exact (single term) equiv

(iii) State or imply 
$$\int \frac{4\pi}{x(4\ln x + 3)^2} \, dx$$

Obtain integral of form  $k \frac{4 \ln x - 3}{4 \ln x + 3}$ 

or 
$$k(4 \ln x + 3)^{-1}$$

\*M1 any constant k

Substitute both limits and subtract right way

round

M1dep \*M

Obtain  $\frac{4}{21}\pi$ 

A1 or exact equiv

Attempt use of either of  $tan(A \pm B)$  identities 9 (i)

Substitute  $\tan 60^{\circ} = \sqrt{3}$  or  $\tan^2 60^{\circ} = 3$ 

M1 **B**1

Obtain 
$$\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$$

**A**1 or equiv (perhaps with tan 60°

still involved)

Obtain 
$$\frac{\tan^2 \theta - 3}{1 - 3\tan^2 \theta}$$

A1 AG

Use  $\sec^2 \theta = 1 + \tan^2 \theta$ (ii)

**B**1

Attempt rearrangement and simplification of equation involving  $\tan^2 \theta$ 

Obtain  $\tan^4 \theta = \frac{1}{3}$ 

M1 A1

or equiv involving  $\sec \theta$ or equiv  $\sec^2 \theta = 1.57735...$ 

**A**1 or greater accuracy

Obtain 37.2 Obtain 142.8

or greater accuracy; and no others A1 5 between 0 and 180

Attempt rearrangement of  $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta} = k^2$  to form (iii)

$$\tan^2 \theta = \frac{f(k)}{g(k)}$$

Obtain 
$$\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$$

Observe that RHS is positive for all k, giving one value in each quadrant

A1 3 or convincing equiv

Obtain 0.75

| 1 (i)         | Show correct process for composition of functions                                                                                    | M1 numerical or algebraic; the right waround                                                                                                                                             | way  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|               | Obtain (-3 and hence) -23                                                                                                            | A1 2                                                                                                                                                                                     |      |
| ( <b>ii</b> ) | Either: State or imply $x^3 + 4 = 12$<br>Attempt solution of equation involving $x^3$<br>Obtain 2                                    | B1 M1 as far as $x =$ A1 3 and no other value                                                                                                                                            |      |
|               | Or: Attempt expression for $f^{-1}$<br>Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$<br>Obtain 2                                         | <ul><li>M1 involving x or y; involving cube ro</li><li>A1</li><li>A1 (3) and no other value</li></ul>                                                                                    | root |
| 2 (i)         | Obtain correct first iterate 2.864  Carry out correct iteration process Obtain 2.877  [3 → 2.864327 → 2.878042 → 2.87                | B1 or greater accuracy 2.864327; condone 2 dp here and in working  M1 to find at least 3 iterates in all  A1 3 after at least 4 steps; answer required to exactly 3 dp  6661 → 2.876800] |      |
| (ii)          | State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$<br>Attempt rearrangement of equation in $x$<br>Obtain equation $2x^3 + 5x - 62 = 0$ | <ul> <li>M1 involving cubing and grouping non-zero terms on LHS</li> <li>A1 3 or equiv with integers</li> </ul>                                                                          |      |
| 3 (a          | ) State correct equation involving $\cos \frac{1}{2}\alpha$                                                                          | <b>B1</b> such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$                                                                                       | : 4  |
|               | Attempt to find value of $\alpha$ Obtain 151                                                                                         | or using correct order for the steps A1 3 or greater accuracy; and no other values between 0 and 180                                                                                     | er   |
| (b            | State or imply $\cot \beta = \frac{1}{\tan \beta}$                                                                                   | B1                                                                                                                                                                                       |      |
|               | Rearrange to the form $\tan \beta = k$                                                                                               | <b>M1</b> or equiv involving $\sin \beta$ only or $\cos \beta$ only; allow missing $\pm$                                                                                                 |      |
|               | Obtain 69.3<br>Obtain 111                                                                                                            | A1 A1 4 or greater accuracy; and no others between 0 and 180                                                                                                                             | ers  |
| 4 (i)         | Obtain derivative of form $kh^5(h^6 + 16)^n$                                                                                         | <b>M1</b> any constant $k$ ; any $n < \frac{1}{2}$ ; allow i $-4$ term retained                                                                                                          | w if |
|               | Obtain correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$                                                                                       | A1 or (unsimplified) equiv; no –4 nov                                                                                                                                                    |      |
| (ii)          | Substitute to obtain 10.7  Attempt multn or divn using 8 and answer from (i)  Attempt 8 divided by answer from (i)  Obtain 0.75      | M1 A1 3 or greater accuracy or exact equiv                                                                                                                                               |      |

 $A1\sqrt{3}$  or greater accuracy; allow  $0.75 \pm 0.01$ ;

following their answer from (i)

| 5 (a) | Obtain integral of form $k(3x + 7)^{10}$                              |
|-------|-----------------------------------------------------------------------|
|       | Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x + 7)^{10}$ |
|       | Obtain (simplified) $\frac{1}{30}(3x+7)^{10} + c$                     |

$$M1$$
 any constant  $k$ 
 $A1$  or equiv
 $A1 \quad 3$ 

**(b)** State 
$$\int \pi (\frac{1}{2\sqrt{x}})^2 dx$$
  
Integrate to obtain  $k \ln x$ 

6 (i)

**B1** or equiv involving 
$$x$$
; condone no d $x$   
**M1** any constant  $k$  involving  $\pi$  or not;  
or equiv such as  $k \ln 4x$  or  $k \ln 2x$ 

Obtain 
$$\frac{1}{4}\pi \ln x$$
 or  $\frac{1}{4}\ln x$  or  $\frac{1}{4}\pi \ln 4x$  or  $\frac{1}{4}\ln 4x$  **A1** Show use of the  $\log a - \log b$  property
Obtain  $\frac{1}{2}\pi \ln 2$ 

State translation by 1 in negative *x*-direction

Show use of the 
$$\log a - \log b$$
 property  
Obtain  $\frac{1}{4}\pi \ln 2$ 

Either: Refer to translation and reflection

(iii) Attempt correct process for finding at least one value

M1 as far as 
$$x = ...$$
; accept decimal equivs (degrees or radians) or expressions involving  $\sin(\frac{1}{3}\pi)$ 

Obtain 
$$1 - \frac{1}{2}\sqrt{3}$$
  
Obtain  $1 + \frac{1}{2}\sqrt{3}$ 

7 (i) Attempt use of product rule for 
$$xe^{2x}$$
  
Obtain  $e^{2x} + 2xe^{2x}$ 

M1 obtaining 
$$\dots + \dots$$

Attempt use of quotient rule

Obtain unsimplified 
$$\frac{(x+k)(e^{2x} + 2xe^{2x}) - xe^{2x}}{(x+k)^2}$$

Obtain 
$$\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$$

**A1** 

**A1** 

**A1** 

Attempt use of discriminant Obtain  $4k^2 - 8k = 0$  or equiv and hence k = 2Attempt solution of  $2x^2 + 2kx + k = 0$ 

Obtain 
$$x = -1$$
  
Obtain  $-e^{-2}$ 

(ii)

| 8 (i) | State or imply $h = 1$<br>Attempt calculation involving attempts at $y$ values                        | B1<br>M1   |   | addition with each of coefficients 1, 2, 4 occurring at least once; involving at least 5 y values |
|-------|-------------------------------------------------------------------------------------------------------|------------|---|---------------------------------------------------------------------------------------------------|
|       | Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1<br>Obtain 91 | <b>A1</b>  | 4 | any constant a                                                                                    |
| (ii)  | State $e^{x \ln 2}$ or $k = \ln 2$                                                                    | <b>B</b> 1 |   | allow decimal equiv such as $e^{0.69x}$                                                           |
|       | Integrate $e^{kx}$ to obtain $\frac{1}{k}e^{kx}$                                                      | M1         |   | any constant $k$ or in terms of general $k$                                                       |
|       | Obtain $\frac{1}{\ln 2} (e^{6\ln 2} - e^0)$                                                           | <b>A1</b>  |   | or exact equiv                                                                                    |
|       | Simplify to obtain $\frac{63}{\ln 2}$                                                                 | <b>A1</b>  | 4 | allow if simplification in part (iii)                                                             |
| (iii) | Equate answers to (i) and (ii)                                                                        | M1         |   | provided ln 2 involved other than in power of e                                                   |
|       | Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$                                                       | A1         | 2 | AG; necessary correct detail required                                                             |
| 9 (i) | State at least one of $\cos \theta \cos 60 - \sin \theta \sin 60$                                     |            |   |                                                                                                   |
| - (=) | and $\cos\theta\cos 30 - \sin\theta\sin 30$<br>Attempt complete multiplication of identities of form  | <b>B</b> 1 |   |                                                                                                   |
|       | $\pm \cos \cos \pm \sin \sin$                                                                         | M1         |   | with values $\frac{1}{2}\sqrt{3}$ , $\frac{1}{2}$ involved                                        |
|       | Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$                 | M1         |   |                                                                                                   |
|       | Obtain $\sqrt{3} - 2\sin 2\theta$                                                                     | <b>A1</b>  | 4 | AG; necessary detail required                                                                     |
| (ii)  | Attempt use of 22.5 in right-hand side                                                                | M1         |   |                                                                                                   |
|       | Obtain $\sqrt{3} - \sqrt{2}$                                                                          | <b>A1</b>  | 2 | or exact equiv                                                                                    |
| (iii) | Obtain 10.7                                                                                           | <b>B</b> 1 |   | or greater accuracy; allow ±0.1                                                                   |
|       | Attempt correct process to find two angles                                                            | M1         | • | from values of $2\theta$ between 0 and 180                                                        |
|       | Obtain 79.3                                                                                           | A1         | 3 | or greater accuracy and no others between 0 and 90; allow $\pm 0.1$                               |
| (iv)  | Indicate or imply that critical values of                                                             | 3.44       |   |                                                                                                   |
|       | $\sin 2\theta$ are $-1$ and $1$                                                                       | M1         |   |                                                                                                   |
|       | Obtain both of $k > \sqrt{3} + 2$ , $k < \sqrt{3} - 2$                                                | A1         | 2 | condoning decimal equivs, ≤≥ signs                                                                |
|       | Obtain complete correct solution                                                                      | A1         | 3 | now with exact values and unambiguously stated                                                    |

| 1 | Eithe       | er: Obtain $x = 0$<br>Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$<br>Obtain $\frac{10}{7}$ and no other non-zero value(s) | B1<br>M1<br>A1<br>A1 | ignoring errors in working<br>ignoring other sign errors<br>or equiv without brackets<br>or exact equiv |
|---|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
|   | <u>Or</u> : | Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$                                                                                                                       | <b>B</b> 1           | or equiv                                                                                                |
|   |             | Attempt solution of quadratic equation                                                                                                                            | M1                   | at least as far as factorisation or use of formula                                                      |
|   |             | Obtain $\frac{10}{7}$ and no other non-zero value(s)                                                                                                              | <b>A1</b>            | or exact equiv                                                                                          |
|   |             | Obtain 0                                                                                                                                                          | <b>B1</b>            | ignoring errors in working                                                                              |
| 2 | (i)         | Show graph indicating attempt at reflection in $y = x$                                                                                                            | M1                   | with correct curvature and crossing negative y-axis and positive x-axis                                 |
|   |             | Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord –3 indicated                                                                                        | A1<br>2              |                                                                                                         |
|   | (ii)        | Show graph indicating attempt at reflection in <i>x</i> -axis                                                                                                     | M1                   | with correct curvature and crossing each negative axis                                                  |
|   |             | Show correct graph with x-coord -3 indicated                                                                                                                      | A1                   |                                                                                                         |
|   |             | and y-coord -4 indicated [SC: Incorrect curve earning M0 but both correct intercept                                                                               | A1                   | cated B1]                                                                                               |
|   |             | [Se. Incorrect curve carming 1410 but both correct intercep                                                                                                       | 3                    | DI <sub>1</sub>                                                                                         |
| 3 |             | Attempt use of product rule                                                                                                                                       | M1                   | + form                                                                                                  |
|   |             | Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$                                                                                                                         | A1                   | or equiv                                                                                                |
|   |             | Substitute e to obtain 3e for gradient                                                                                                                            | A1                   | or exact (unsimplified) equiv                                                                           |
|   |             | Attempt eqn of straight line with numerical gradient                                                                                                              | M1                   | allowing approx values                                                                                  |
|   |             | Obtain $y - e^2 = 3e(x - e)$                                                                                                                                      | <b>A1</b> √          | or equiv; following their gradient provided<br>obtained by diffn attempt; allow approx<br>values        |
|   |             | Obtain $y = 3ex - 2e^2$                                                                                                                                           | <b>A1</b> 6          | in terms of e now and in requested form                                                                 |
|   |             |                                                                                                                                                                   | U                    |                                                                                                         |
| 4 | (i)         | Differentiate to obtain form $kx(2x^2 + 9)^n$                                                                                                                     | M1                   | any constant $k$ ; any $n < \frac{5}{2}$                                                                |
|   |             | Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$                                                                                                                        | <b>A1</b>            | or (unsimplified) equiv                                                                                 |
|   |             | Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$                                                                                                       | A1<br>3              | AG; necessary detail required                                                                           |
|   | (ii)        | Attempt relevant calculations with 0.3 and 0.4                                                                                                                    | M1                   |                                                                                                         |
|   | ` /         | Obtain at least one correct value                                                                                                                                 | A1                   | x $f(x)$ $x-f(x)$ $f'(x)$                                                                               |
|   |             |                                                                                                                                                                   |                      | 0.3 0.3595 -0.0595 83.4                                                                                 |
|   |             |                                                                                                                                                                   |                      | 0.4 0.3515 0.0485 113.8                                                                                 |
|   |             | Obtain two correct values and conclude appropriately                                                                                                              | A1                   | noting sign change or showing $0.3 < f(0.3)$ and $0.4 > f(0.4)$ or showing gradients either side of 100 |
|   |             |                                                                                                                                                                   | 3                    |                                                                                                         |

| (iii)                                  | Obtain correct first iterate Carry out correct process Obtain 0.3553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1<br>M1<br>A1 | finding at least 3 iterates in all answer required to exactly 4 dp |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3              |                                                                    |
|                                        | $[0.3 \to 0.35953 \to 0.35497 \to 0.35538]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                    |
|                                        | $0.35 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.35663 \rightarrow 0.35563 \rightarrow 0.35663 \rightarrow 0.35564 \rightarrow 0.35664 \rightarrow 0$ |                |                                                                    |
| <b>5</b> (a)                           | $a \tan \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                    |
| 5 (a)                                  | Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1             | any non-zero constants a, b, c                                     |
|                                        | State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>A1</b>      | or equiv                                                           |
|                                        | $1 - \tan^2 \alpha$ Attempt to produce polynomial equation in $\tan \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1             | using sound process                                                |
|                                        | Obtain at least one correct value of $\tan \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1             | $\tan \alpha = \pm \sqrt{\frac{4}{5}}$                             |
|                                        | Obtain 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1             | allow 42 or greater accuracy; allow 0.73                           |
|                                        | Obtain 138.2 and no other values between 0 and 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1             | allow 138 or greater accuracy                                      |
|                                        | [SC: Answers only 41.8 or B1; 138.2 or .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | others B1]                                                         |
| (I-)(!                                 | D.G., 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>D1        |                                                                    |
| (D)(I                                  | i) State $\frac{7}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1<br>1        |                                                                    |
|                                        | i)Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>       | or equiv retaining exactness; condone sign                         |
| (11                                    | ) Attempt use of identity mixing cot $\rho$ and cosec $\rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IVII           | errors                                                             |
|                                        | Obtain $\frac{13}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1             | or exact equiv                                                     |
|                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2              |                                                                    |
| 6                                      | Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1             | any constants involving $\pi$ or not; any $n$                      |
|                                        | Obtain correct indefinite integral of their $k_1e^{nx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>A1</b>      |                                                                    |
|                                        | Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>A1</b>      | or exact equiv perhaps involving e <sup>0</sup>                    |
|                                        | Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1             | any constants involving $\pi$ or not; any $n$                      |
|                                        | Obtain correct indefinite integral of their $k(2x-1)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>A1</b>      | , ,                                                                |
|                                        | Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1             | or exact equiv                                                     |
|                                        | Apply formula $\int \pi y^2 dx$ at least once                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B1</b>      | for $y = e^{3x}$ and/or $y = (2x-1)^4$                             |
|                                        | Subtract, correct way round, attempts at volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1             | allow with $\pi$ missing but must involve                          |
| $y^2$                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                    |
|                                        | Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>A1</b>      | or similarly simplified exact equiv                                |
|                                        | 0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9              |                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                    |
| 7 (i)                                  | State $A = 42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1             | 0.11                                                               |
|                                        | State $k = \frac{1}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1<br>M1       | or 0.11 or greater accuracy involving logarithms or equiv          |
|                                        | Attempt correct process for finding <i>m</i> Obtain $\frac{1}{9} \ln 2$ or 0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1             | or 0.08 or greater accuracy                                        |
|                                        | 9 m 2 or 0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4              | of 0.00 of greater decardey                                        |
| —————————————————————————————————————— | Attempt solution for t using either formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1             | using correct process (log'ms or T&I or                            |
|                                        | Obtain 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>A1</u>      | or greater accuracy; allow $11.3 \pm 0.1$                          |
|                                        | Dicc viv a la i c D mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2              | 1 D 196                                                            |
| (iii)                                  | Differentiate to obtain form $Be^{mt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1             | where $B$ is different from $A$                                    |
|                                        | Obtain 3.235e <sup>0.077t</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1√            | or equiv; following their $A$ and $m$                              |
|                                        | Obtain 47.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>A1</b>      | allow 48 or greater accuracy                                       |

| 8 | (i)   | Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or $\cos \theta \cos 60 - \sin \theta \sin 60$<br>Attempt expansion of both with exact numerical values attempted<br>Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$                        | B1<br>M1<br>A1       | and with cos 60 ≠ sin 60<br>or exact equiv                                                                                                                                                                         |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (ii)  | Attempt correct process for finding <i>R</i> Attempt recognisable process for finding $\alpha$ Obtain $\sqrt{7} \sin(\theta + 70.9)$                                                                                                                                         | M1<br>M1<br>A1       | whether exact or approx allowing $\sin$ / $\cos$ muddles allow 2.65 for $R$ ; allow $70.9 \pm 0.1$ for $\alpha$                                                                                                    |
|   | (iii) | Attempt correct process to find any value of $\theta$ + their $\alpha$ Obtain any correct value for $\theta$ + 70.9  Attempt correct process to find $\theta$ + their $\alpha$ in 3rd quadrant Obtain 131  [SC for solutions with no working shown: Correct answers          | M1<br>A1<br>M1<br>A1 | -158, -22, 202, 338, or several values including this or greater accuracy and no other nly B4; 131 with other answers B2]                                                                                          |
| 9 | (i)   | Attempt use of quotient rule Obtain $\frac{75-15x^2}{(x^2+5)^2}$ Equate attempt at first derivative to zero and rearrange to solvable form Obtain $x=\sqrt{5}$ or 2.24 Recognise range as values less than <i>y</i> -coord of st pt Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$ | *M1 A1 M1 A1 M1 A1 G | or equiv; allow $u / v$ muddles  or (unsimplified) equiv; this <b>M1A1</b> available at any stage of question  dep * <b>M</b> or greater accuracy  allowing < here  any notation; with $\leq$ now; any exact equiv |
|   | (ii)  | State $\sqrt{5}$                                                                                                                                                                                                                                                             | B1√<br>1             | following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k                                                                                                                        |
|   | (iii) | Equate attempt at first derivative to $-1$ and attempt simplification  Obtain $x^4 - 5x^2 + 100 = 0$ Attempt evaluation of discriminant or equiv  Obtain $-375$ or equiv and conclude appropriately                                                                          | *M1 A1 M1 A1 4       | and dependent on first <b>M</b> in part (i) or equiv involving 3 non-zero terms dep * <b>M</b>                                                                                                                     |

| 1 (i) | Obtain integral of form $ke^{-2x}$<br>Obtain $-4e^{-2x}$                                            | M1<br>A1       | any constant <i>k</i> different from 8 or (unsimplified) equiv |
|-------|-----------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|
| (ii)  | Obtain integral of form $k(4x+5)^7$<br>Obtain $\frac{1}{28}(4x+5)^7$<br>Include + $c$ at least once | M1<br>A1<br>B1 | any constant $k$ in simplified form in either part             |
| 2 (i) | Form expression involving attempts at <i>y</i> values and addition                                  | M1             | with coeffs 1, 4 and 2 present at                              |

| 2 (i) | Form expression involving attempts at $y$ values and addition<br>Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ | M1<br>A1 |   | with coeffs 1, 4 and 2 present at least once any constant $k$ |
|-------|----------------------------------------------------------------------------------------------------------------------------|----------|---|---------------------------------------------------------------|
|       | Use value of $k$ as $\frac{1}{3} \times 2$<br>Obtain 16.27                                                                 | A1<br>A1 | 4 | or unsimplified equiv or 16.3 or greater accuracy (16.27164)  |
| (ii)  | State 162.7 or 163                                                                                                         | B1√      | 1 | following their answer to (i), maybe rounded                  |

|       |                                             | Ŀ  | 2                                          |  |  |  |
|-------|---------------------------------------------|----|--------------------------------------------|--|--|--|
| 3 (i) | Attempt use of identity for $\tan^2 \theta$ | M1 | using $\pm \sec^2 \theta \pm 1$ ; or equiv |  |  |  |

| Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ | B1            |
|--------------------------------------------------|---------------|
| Obtain $2(\sec^2\theta - 1) - \sec\theta$        | A1 3 or equiv |

| (ii) | Attempt soln of quadratic in $\sec\theta$ or $\cos\theta$  | M1         |   | as far as factorisation or<br>substitution in correct formula |
|------|------------------------------------------------------------|------------|---|---------------------------------------------------------------|
|      | Relate $\sec \theta$ to $\cos \theta$ and attempt at least |            |   |                                                               |
|      | one value of $\theta$                                      | M1         |   | may be implied                                                |
|      | Obtain 60°, 131.8°                                         | A1         |   | allow 132 or greater accuracy                                 |
|      | Obtain 60°, 131.8°, 228.2°, 300°                           | <b>A</b> 1 | 4 | allow 132, 228 or greater accuracy; and no                    |
|      |                                                            |            |   | others between 0° and 360°                                    |
|      |                                                            |            | 7 |                                                               |

| 4 (i) | Obtain derivative of form $kx(4x^2+1)^4$ | M1           | any constant k                              |
|-------|------------------------------------------|--------------|---------------------------------------------|
|       | Obtain $40x(4x^2+1)^4$                   | A1           | or (unsimplified) equiv                     |
|       | State $x = 0$                            | A1√ <b>3</b> | and no other; following their derivative of |
|       |                                          |              | form $kx(4x^2 + 1)^4$                       |

| (ii) | Attempt use of quotient rule                                | M1          | or equiv                                                                     |
|------|-------------------------------------------------------------|-------------|------------------------------------------------------------------------------|
|      | Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$ | A1          | or equiv                                                                     |
|      | Equate to zero and attempt solution                         | M1          | as far as solution involving e                                               |
|      | Obtain $e^{\frac{1}{2}}$                                    | A1 <b>4</b> | or exact equiv; and no other; allow from ± (correct numerator of derivative) |
|      |                                                             | 7           | ,                                                                            |

| 5 (i) | State 40 Attempt value of $k$ using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of $M$ for $t = 63$ Obtain 320  Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64                                                                             | B1<br>M1<br>A1<br>M1<br>A1<br>A1<br>A1 | <br>   | or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this  any constant $c$ different from 40 following their value of $k$ allow 2.6 or $2.64 \pm 0.01$ or greater accuracy $(2.64056)$ |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 (i) | Attempt correct process for finding inverse Obtain $2x^3 - 4$<br>State $\sqrt[3]{2}$ or 1.26                                                                                                                                                                                                                        | M1<br>A1<br>B1                         | 3      | maybe in terms of $y$ so far or equiv; in terms of $x$ now                                                                                                                                                                                                     |
| (ii)  | State reflection in $y = x$<br>Refer to intersection of $y = x$ and $y = f(x)$<br>and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$                                                                                                                                                                                | B1<br>B1                               | 2      | or clear equiv AG; or equiv                                                                                                                                                                                                                                    |
| (iii) | Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $[0 \to 1.259921 \to 1.380330 \to 1.3$ $1 \to 1.357209 \to 1.388789 \to 1.3$ $1.26 \to 1.380337 \to 1.390784 \to$ $1.5 \to 1.401020 \to 1.392564 \to 1$ $2 \to 1.442250 \to 1.396099 \to 1.3$ | 9151<br>1.391<br>.3918                 | 4<br>4 | → 1.391747<br>4 → 1.391761<br>→ 1.391775<br>→ 1.391801]                                                                                                                                                                                                        |
| 7 (i) | Refer to stretch and translation State stretch, factor $\frac{1}{k}$ , in <i>x</i> direction State translation in negative <i>y</i> direction by <i>a</i> [SC: If M0 but one transformation complete                                                                                                                |                                        |        |                                                                                                                                                                                                                                                                |
| (ii)  | Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch                                                                                                                                                                                                                                         | M1<br>A1                               | 2      | ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point                                                                                                                                                     |
| (iii) | Attempt method with $x = 0$ to find value of Obtain $a = 14$<br>Attempt to solve for $k$<br>Obtain $k = 3$                                                                                                                                                                                                          | aM1<br>A1<br>M1<br>A1                  | 4 9    | other than (or in addition to) value $-12$ and nothing else using any numerical $a$ with sound process                                                                                                                                                         |

| 8 (i) |             | to express $x$ or $x^2$ in terms of $y$                                                 | M1         |     |                                                                                                       |
|-------|-------------|-----------------------------------------------------------------------------------------|------------|-----|-------------------------------------------------------------------------------------------------------|
|       | Obtain      | $x^2 = \frac{1296}{\left(y+3\right)^4}$                                                 | A1         |     | or (unsimplified) equiv                                                                               |
|       | Obtain i    | ntegral of form $k(y+3)^{-3}$                                                           | <b>M</b> 1 |     | any constant k                                                                                        |
|       | Obtain -    | $-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$                                                 | <b>A</b> 1 |     | or (unsimplified) equiv                                                                               |
|       | Attempt     | evaluation using limits $0$ and $p$                                                     | M1         |     | for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round |
|       | Confirm     | $16\pi(1-\frac{27}{(p+3)^3})$                                                           | A1         | 6   | AG; necessary detail required, including                                                              |
|       |             | ······                                                                                  |            |     | appearance of $\pi$ prior to final line                                                               |
| (ii)  | State or    | obtain $\frac{\mathrm{d}V}{\mathrm{d}p} = 1296\pi (p+3)^{-4}$                           | B1         |     | or equiv; perhaps involving y                                                                         |
|       | Multiply    | $\frac{\mathrm{d}p}{\mathrm{d}t}$ and attempt at $\frac{\mathrm{d}V}{\mathrm{d}p}$      | *M1        |     | algebraic or numerical                                                                                |
|       | Substitu    | te $p = 9$ and attempt evaluation                                                       | <b>M</b> 1 |     | dep *M                                                                                                |
|       | Obtain      | $\frac{1}{4}\pi$ or 0.785                                                               | <b>A</b> 1 | 4   | or greater accuracy                                                                                   |
|       |             |                                                                                         |            | 10  |                                                                                                       |
| 9 (i) | State co    | $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$                                   | B1         |     |                                                                                                       |
|       | Use at le   | east one of $\cos 2\theta = 2\cos^2 \theta - 1$                                         |            |     |                                                                                                       |
|       |             | $\sin 2\theta = 2\sin\theta\cos\theta$                                                  | B1         |     |                                                                                                       |
|       | Attempt     | to express in terms of $\cos \theta$ only                                               | M1         |     | using correct identities for                                                                          |
|       |             | 2                                                                                       |            |     | $\cos 2\theta$ , $\sin 2\theta$ and $\sin^2 \theta$                                                   |
|       | Obtain      | $4\cos^3\theta - 3\cos\theta$                                                           | A1         | 4   | AG; necessary detail required                                                                         |
| (ii)  | Either:     | State or imply $\cos 6\theta = 2\cos^2 3\theta$ – Use expression for $\cos 3\theta$ and | 1B1        |     |                                                                                                       |
|       |             | attempt expansion                                                                       | <b>M</b> 1 |     | for expression of form $\pm 2\cos^2 3\theta \pm 1$                                                    |
|       |             | Obtain $32c^6 - 48c^4 + 18c^2 - 1$                                                      | <b>A</b> 1 | 3   | AG; necessary detail required                                                                         |
|       | <u>Or</u> : | State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$                                  | B1         |     | maybe implied                                                                                         |
|       |             | Express $\cos 2\theta$ in terms of $\cos \theta$                                        |            |     |                                                                                                       |
|       |             | and attempt expansion                                                                   | M1         |     | for expression of form $\pm 2\cos^2\theta \pm 1$                                                      |
|       |             | Obtain $32c^6 - 48c^4 + 18c^2 - 1$                                                      | A1         | (3) | AG; necessary detail required                                                                         |
| (iii) | Substitu    | te for $\cos 6\theta$                                                                   | *M1        |     | with simplification attempted                                                                         |
|       | Obtain      | $32c^6 - 48c^4 = 0$                                                                     | A1         |     | or equiv                                                                                              |
|       |             |                                                                                         |            |     |                                                                                                       |
|       | Attempt     | solution for $c$ of equation                                                            | M1         |     | dep *M                                                                                                |

Obtain  $32c^6 - 48c^4 = 0$  A1 or equiv Attempt solution for c of equation M1 dep \*M Obtain  $c^2 = \frac{3}{2}$  and observe no solutions A1 or equiv; correct work only Obtain c = 0, give at least three specific angles and conclude odd multiples of 90 A1 5 AG; or equiv; necessary detail required; correct work only

- 1 (i)
   State  $y = \sec x$  B1

   (ii)
   State  $y = \cot x$  B1

   (iii)
   State  $y = \sin^{-1} x$  B1 3

   3
   3
- 2 <u>Either</u>: State or imply  $\int \pi (2x-3)^4 dx$  B1 or unsimplified equiv
  - Obtain integral of form  $k(2x-3)^5$  M1 any constant k involving  $\pi$  or not Obtain  $\frac{1}{10}(2x-3)^5$  or  $\frac{1}{10}\pi(2x-3)^5$  A1
  - Attempt evaluation using 0 and  $\frac{3}{2}$  M1 subtraction correct way round

    Obtain  $\frac{243}{10}\pi$  A1 5 or exact equiv
  - Or:State or imply  $\int \pi (2x-3)^4 dx$ B1or unsimplified equivExpand and obtain integral of order 5M1with at least three terms correctOb'n  $\frac{16}{5}x^5 24x^4 + 72x^3 108x^2 + 81x$ A1with or without  $\pi$ 
    - Attempt evaluation using (0 and)  $\frac{3}{2}$  M1

      Obtain  $\frac{243}{10}\pi$  A1 (5) or exact equiv
- 3 (i) Attempt use of identity for  $\sec^2 \alpha$  M1 using  $\pm \tan^2 \alpha \pm 1$ Obtain  $1 + (m+2)^2 - (1+m^2)$  A1 absent brackets implied by subsequent correct working Obtain 4m + 4 = 16 and hence m = 3 A1 3
- (ii) Attempt subn in identity for  $\tan(\alpha + \beta)$  M1 using  $\frac{\pm \tan \alpha \pm \tan \beta}{\sin \alpha}$ 
  - Obtain  $\frac{5+3}{1-15}$  or  $\frac{m+2+m}{1-m(m+2)}$  A1 $\sqrt{\phantom{a}}$  following their m
  - Obtain  $-\frac{4}{7}$  A1 3 or exact equiv
- **4** (i) Obtain  $\frac{1}{3}e^{3x} + e^{x}$  B1
- Substitute to obtain  $\frac{1}{3}e^{9a} + e^{3a} \frac{1}{3}e^{3a} e^{a}$  B1 or equiv Equate definite integral to 100 and
  - attempt rearrangement M1 as far as  $e^{9a} = ...$ Introduce natural logarithm M1 using correct process
  - Obtain  $a = \frac{1}{9}\ln(300 + 3e^a 2e^{3a})$  A1 5 AG; necessary detail needed
- (ii) Obtain correct first iterate B1 allow for 4 dp rounded or truncated Show correct iteration process M1 with at least one more step Obtain at least three correct iterates in all A1 allowing recovery after error Obtain 0.6309 A1 4 following at least three correct steps; answer required to exactly 4 dp
  - $[0.6 \rightarrow 0.631269 \rightarrow 0.630884 \rightarrow 0.630889]$

| 5 (i) | Either: Show correct process for comp'n Obtain $y = 3(3x+7) - 2$ Obtain $x = -\frac{19}{9}$                                                                                      | M1<br>A1<br>A1 3   | correct way round and in terms of $x$ or equiv or exact equiv; condone absence of $y = 0$                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|
|       | Or: Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$<br>Attempt solution of $g(x) = \frac{2}{3}$<br>Obtain $x = -\frac{19}{9}$                                                     | B1<br>M1<br>A1 (3) | or exact equiv; condone absence of $y = 0$                                                                           |
| (ii)  | Attempt formation of one of the equations                                                                                                                                        |                    |                                                                                                                      |
|       | $3x+7 = \frac{x-7}{3} \text{ or } 3x+7 = x \text{ or } \frac{x-7}{3} = x$ Obtain $x = -\frac{7}{2}$ Obtain $y = -\frac{7}{2}$                                                    | A1                 | or equiv or equiv; following their value of $x$                                                                      |
| (iii) | Attempt solution of modulus equation                                                                                                                                             | M1                 | squaring both sides to obtain 3-term quadratics or forming linear equation with signs of $3x$ different on each side |
|       | Obtain $-12x + 4 = 42x + 49$ or $3x - 2 = -3x - 7$<br>Obtain $x = -\frac{5}{6}$<br>Obtain $y = \frac{9}{2}$                                                                      | A1<br>A1<br>A1 4   | or equiv<br>or exact equiv; as final answer<br>or equiv; and no other pair of answers                                |
|       |                                                                                                                                                                                  | 10                 |                                                                                                                      |
| 6 (i) | Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$<br>Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$                                                                 | M1<br>A1 2         | any constant $k$ ; any linear function for f or equiv                                                                |
| (ii)  | Either: Sub'te $y = 3$ in expression for $\frac{dx}{dy}$ Take reciprocal of expression/value Obtain -7 for gradient of tangent Attempt equation of tangent Obtain $y = -7x + 52$ | A1<br>M1           | and without change of sign  dep *M *M  and no second equation                                                        |
|       | Or: Sub'te $y = 3$ in expression for $\frac{dx}{dy}$                                                                                                                             | M1                 |                                                                                                                      |
|       | Attempt formation of eq'n $x = m'y + c$                                                                                                                                          | M1                 | where $m'$ is attempt at $\frac{dx}{dy}$                                                                             |
|       | Obtain $x-7 = -\frac{1}{7}(y-3)$<br>Attempt rearrangement to required form                                                                                                       |                    | or equiv                                                                                                             |

7

Obtain y = -7x + 52

A1 (5) and no second equation

| 7 (i)      | State $R = 10$<br>Attempt to find value of $\alpha$                                                                                                                 | B1<br>M1   | or equiv<br>implied by correct answer or its<br>complement; allow sin/cos muddles               |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|--|--|
|            | Obtain 36.9 or $\tan^{-1} \frac{3}{4}$                                                                                                                              | A1 3       | or greater accuracy 36.8699                                                                     |  |  |
| (ii)(a)    | Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second angle Obtain (115.84 + 36.87 and hence) 153 | A1<br>M1   | or greater accuracy 101.027                                                                     |  |  |
|            | Obtain (115.84 + 36.87 and hence) 153                                                                                                                               | A1 V 4     | following their value of $\alpha$ ; or greater accuracy 152.711; and no other between 0 and 360 |  |  |
| <b>(b)</b> | Recognise link with part (i) Use fact that maximum and minimum                                                                                                      | M1         | signalled by 40 20                                                                              |  |  |
|            | values of sine are 1 and –1 Obtain 60                                                                                                                               | M1<br>A1 3 | may be implied; or equiv                                                                        |  |  |
| 8 (i)      | Refer to translation and stretch                                                                                                                                    | M1         | in either order; allow here equiv informal terms such as 'move',                                |  |  |
|            | State translation in <i>x</i> direction by 6<br>State stretch in <i>y</i> direction by 2<br>[SC: if M0 but one transformation complete                              |            | or equiv; now with correct terminology or equiv; now with correct terminology                   |  |  |
|            |                                                                                                                                                                     |            |                                                                                                 |  |  |
| (ii)       | State $2\ln(x-6) = \ln x$<br>Show correct use of logarithm property                                                                                                 | B1<br>*M1  | or $2\ln(a-6) = \ln a$ or equiv                                                                 |  |  |
|            | Attempt solution of 3-term quadratic                                                                                                                                | M1         | dep *M                                                                                          |  |  |
|            | Obtain 9 only                                                                                                                                                       | A1 4       | following correct solution of equation                                                          |  |  |
| (iii)      | Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$                                                                                                                    | ) M1       | any constant $k$ ; maybe with $y_0 = 0$ implied                                                 |  |  |
|            | Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$                                                                                                          | A1         | or equiv                                                                                        |  |  |
|            | Obtain 2.58                                                                                                                                                         | A1 3       | or greater accuracy 2.5808                                                                      |  |  |
|            |                                                                                                                                                                     |            |                                                                                                 |  |  |
| 9 (a)      |                                                                                                                                                                     | *M1        | or equiv; allow numerator wrong way round and denominator errors                                |  |  |
|            | Obtain $\frac{(kx^2 + 1)2kx - (kx^2 - 1)2kx}{(kx^2 + 1)^2}$                                                                                                         | A1         | or equiv; with absent brackets implied by                                                       |  |  |
|            | Obtain correct simplified numerator $4kx$                                                                                                                           | A1         | subsequent correct working                                                                      |  |  |
|            | Equate numerator of first derivative to zero<br>State $x = 0$ or refer to $4kx$ being linear or                                                                     |            | dep *M                                                                                          |  |  |
|            | observe that, with $k \neq 0$ , only one sol'n                                                                                                                      | A1√ 5      | AG or equiv; following numerator of form $k'kx = 0$ , any constant $k'$                         |  |  |
|            |                                                                                                                                                                     |            |                                                                                                 |  |  |

| <b>(b)</b> | Attempt use of product rule                 | *M1 |          |
|------------|---------------------------------------------|-----|----------|
|            | Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$ | A1  | or equiv |

Equate to zero and either factorise with factor 
$$e^{mx}$$
 or divide through by  $e^{mx}$  M1 dep \*M

Obtain 
$$mx^2 + (m^2 + 2)x + m = 0$$
 or equiv  
and observe that  $e^{mx}$  cannot be zero A1

Attempt use of discriminant M1 using correct 
$$b^2 - 4ac$$
 with their  $a, b, c$ 

Attempt use of discriminant M1 using correct 
$$b^2 - 4ac$$
 with their  $a, b, c$  Simplify to obtain  $m^4 + 4$  A1 or equiv

Observe that this is positive for all 
$$m$$
 and hence two roots

A1  $\frac{7}{12}$  or equiv; AG

| 1 |            | Obtain integral of form $k(2x-7)^{-1}$<br>Obtain correct $-5(2x-7)^{-1}$<br>Include + $c$                                                                                                                                                                                                            | <ul> <li>M1 any constant k</li> <li>A1 or equiv</li> <li>B1 3 at least once; following any integral</li> <li>3</li> </ul>                                                                                   |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <b>(i)</b> | Use $\sin 2\theta = 2\sin \theta \cos \theta$<br>Attempt value of $\sin \theta$ from $k \sin \theta \cos \theta = 5\cos \theta$<br>Obtain $\frac{5}{12}$                                                                                                                                             | <ul><li>B1</li><li>M1 any constant k; or equiv</li><li>A1 3 or exact equiv; ignore subsequent work</li></ul>                                                                                                |
|   | (ii)       | Use $\csc\theta = \frac{1}{\sin\theta}$ or $\csc^2\theta = 1 + \cot^2\theta$<br>Attempt to produce equation involving $\cos\theta$ only<br>Obtain $3\cos^2\theta + 8\cos\theta - 3 = 0$<br>Attempt solution of 3-term quadratic equation<br>Obtain $\frac{1}{3}$ as only final value of $\cos\theta$ | <ul> <li>B1 or equiv</li> <li>M1 using sin² θ = ±1±cos² θ or equiv</li> <li>A1 or equiv</li> <li>M1 using formula or factorisation or equiv</li> <li>A1 5 or exact equiv; ignore subsequent work</li> </ul> |
| 3 | (i)        | Obtain or clearly imply $60 \ln x$<br>Obtain ( $60 \ln 20 - 60 \ln 10$ and hence) $60 \ln 2$                                                                                                                                                                                                         | B1 B1 2 with no error seen                                                                                                                                                                                  |
|   | (ii)       | Attempt calculation of form $k(y_0 + 4y_1 + y_2)$<br>Identify $k$ as $\frac{5}{3}$<br>Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7                                                                                                                                           | M1 any constant k; using y-value attempts A1 A1 3 or equiv                                                                                                                                                  |
|   | (iii)      | Equate answers to parts (i) and (ii)  Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$                                                                                                                                                                                                    | M1 provided ln 2 involved A1 2 AG; necessary detail required including clear use of an exact value from (ii)                                                                                                |
| 4 | (i)        | Attempt correct process for composition Obtain (7 and hence) 0                                                                                                                                                                                                                                       | M1 numerical or algebraic A1 2                                                                                                                                                                              |
|   | (ii)       | Attempt to find <i>x</i> -intercept Obtain $x \le 7$                                                                                                                                                                                                                                                 | M1<br>A1 <b>2</b> or equiv; condone use of <                                                                                                                                                                |

M1

**A**1

A1 3 or equiv in terms of x

B1 1 or clear equiv

8

(iii) Attempt correct process for finding inverse

Obtain  $\pm (2-y)^3 - 1$  or  $\pm (2-x)^3 - 1$ 

Obtain correct  $(2-x)^3-1$ 

(iv) Refer to reflection in y = x

5 (i) Obtain derivative of form  $kx(x^2 + 1)^7$ 

Obtain  $16x(x^2 + 1)^7$ 

Equate first derivative to 0 and confirm x = 0 or substitute x = 0 and verify first derivative zero

Refer, in some way, to  $x^2 + 1 = 0$  having no root

M1 any constant k

A1 or equiv

M1 AG; allow for deriv of form  $kx(x^2 + 1)^7$ 

A1 4 or equiv

- \_\_\_\_\_
- (ii) Attempt use of product rule

Obtain  $16(x^2+1)^7 + ...$ 

Obtain ... +  $224x^2(x^2+1)^6$ 

Substitute 0 in attempt at second derivative Obtain 16

- \*M1 obtaining ... + ... form
- A1 $\sqrt{1}$  follow their  $kx(x^2+1)^7$
- A1 $\sqrt{ }$  follow their  $kx(x^2 + 1)^7$ ; or unsimplified equiv
- M1 dep \*M
- A1 **5** from second derivative which is correct at some point

9

6 Integrate  $e^{3x}$  to obtain  $\frac{1}{2}e^{3x}$  or  $e^{-\frac{1}{2}x}$  to obtain  $-2e^{-\frac{1}{2}x}$  B1 or both

Obtain indefinite integral of form  $m_1 e^{3x} + m_2 e^{-\frac{1}{2}x}$ 

M1 any constants  $m_1$  and  $m_2$ 

Obtain correct  $\frac{1}{3}ke^{3x} - 2(k-2)e^{-\frac{1}{2}x}$ 

A1 or equiv

Obtain  $e^{3\ln 4} = 64$  or  $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$ 

Apply limits and equate to 185

Obtain  $\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$ 

Obtain  $\frac{17}{2}$ 

B1 or both

M1 including substitution of lower limit

- A1 or equiv
- A1 7 or equiv

7

7 (a) Either: State or imply either  $\frac{dA}{dr} = 2\pi r$  or  $\frac{dA}{dt} = 250$  B1 or both

Attempt manipulation of derivatives

to find  $\frac{dr}{dt}$ 

Obtain correct  $\frac{250}{2\pi r}$ 

Obtain 1.6

A1 or equiv

M1

A1 4 or equiv; allow greater accuracy

using multiplication / division

Or: Attempt to express r in terms of t

Obtain  $r = \sqrt{\frac{250t}{\pi}}$ 

Differentiate  $kt^{\frac{1}{2}}$  to produce  $\frac{1}{2}kt^{-\frac{1}{2}}$ 

Substitute t = 7.6 to obtain 1.6

- M1 using A = 250t
- A1 or equiv
- M1 any constant k

A1 (4) allow greater accuracy

**(b)** State 
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -150k\mathrm{e}^{-kt}$$

**B**1

Equate to  $(\pm)3$  and attempt value for t

using valid process; condone sign M1 confusion

Obtain 
$$-\frac{1}{k}\ln(\frac{1}{50k})$$
 or  $\frac{1}{k}\ln(50k)$  or  $\frac{\ln 50 + \ln k}{k}$ 

A1 3 or equiv but with correct treatment of

signs 7

(i) State scale factor is  $\sqrt{2}$ State translation is in negative *x*-direction ... ... by  $\frac{3}{2}$  units

**B**1 allow 1.4

B1 or clear equiv

B1 3

(ii) Draw (more or less) correct sketch of  $y = \sqrt{2x+3}$ 

B1 'starting' at point on negative x-axis

Draw (more or less) correct sketch of  $y = \frac{N}{x^3}$ 

**B**1 showing both branches

Indicate one point of intersection

B1 3 with both sketches correct

[SC: if neither sketch complete or correct but diagram correct for both in first quadrant B1]

(iii) (a) Substitute 1.9037 into  $x = N^{\frac{1}{3}} (2x+3)^{-\frac{1}{6}}$ 

M1 or into equation  $\sqrt{2x+3} = \frac{N}{r^3}$ ; or equiv

Obtain 18 or value rounding to 18

A1 2 with no error seen

**(b)** State or imply  $2.6282 = N^{\frac{1}{3}}(2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for N

**B**1

using correct process

A1 3 concluding with integer value

(i) Identify  $\tan 55^{\circ}$  as  $\tan(45^{\circ}+10^{\circ})$ 

Obtain 52

Use correct angle sum formula for tan(A+B)

B1 or equiv

M1or equiv

A1 3 with tan 45° replaced by 1

(ii) Either: Attempt use of identity for  $\tan 2A$ 

Obtain  $p = \frac{2t}{1-t^2}$ 

\*M1 linking 10° and 5°

A1

Attempt solution for t of quadratic equation M1

Obtain  $\frac{-1+\sqrt{1+p^2}}{p}$ 

dep \*M

A1 4 or equiv; and no second expression

Or (1): Attempt expansion of  $tan(60^{\circ}-55^{\circ})$ 

Obtain  $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1 + \sqrt{3} \frac{1+p}{1-p}}$ 

\*M1

A1 $\sqrt{\phantom{0}}$  follow their answer from (i)

Attempt simplification to remove

denominators

dep \*M

Obtain  $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$ 

A1 (4) or equiv Or (2): State or imply  $\tan 15^\circ = 2 - \sqrt{3}$ 

Attempt expansion of tan(15°-10°)

Obtain 
$$\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$$

B1

M1 with exact attempt for tan15°

Or (3): State or imply  $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ 

Attempt expansion of tan(15°-10°)

Obtain 
$$\frac{\sqrt{3}-1-p\sqrt{3}-p}{\sqrt{3}+1+p\sqrt{3}-p}$$

B1 or exact equiv

M1 with exact attempt for tan15°

Or (4): Attempt expansion of  $tan(10^{\circ}-5^{\circ})$ 

Obtain 
$$t = \frac{p-t}{1+pt}$$

\*M1

**A**1

Attempt solution for t of quadratic equation M1

Obtain 
$$\frac{-2 + \sqrt{4 + 4p^2}}{2p}$$

M1 dep \*M

A1 (4) or equiv; and no second

expression

\_\_\_\_\_

(iii) Attempt expansion of both sides

Obtain  $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ =$ 

 $7\cos\theta\cos 10^\circ + 7\sin\theta\sin 10^\circ$ 

Attempt division throughout by  $\cos\theta\cos10^\circ$ 

Obtain 3t + 3p = 7 + 7pt

Obtain 
$$\frac{3p-7}{7p-3}$$

M1

A1 or equiv

M1 or by  $\cos \theta$  (or  $\cos 10^{\circ}$ ) only

A1 or equiv

A1 5 or equiv

12

1 (i) Attempt use of product rule

Obtain  $3x^2e^{2x} + 2x^3e^{2x}$ 

- M1 producing ... + ... form
- A1 2 or equiv
- (ii) Attempt use of chain rule to produce  $\frac{kx}{3+2x^2}$  form

M1 any constant k

Obtain  $\frac{4x}{3+2x^2}$ 

A1 2

M1

(iii) Attempt use of quotient rule

Obtain  $\frac{2x+1-2x}{(2x+1)^2}$  or  $(2x+1)^{-1}-2x(2x+1)^{-2}$ 

A1 2 or (unsimplified) aguiy

A1 2 or (unsimplified) equiv

[If ...+c included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of ...+c.]



2 (i) Obtain one of  $\pm \ln(\pm x \pm 4)$ 

Obtain correct equation  $y = -\ln(x-4)$ 

M1

A1 2 or equiv; condone use of modulus signs instead of brackets

or equiv; condone u/v confusions

(ii) State, in any order, S, S and T State T, then S, then S

- M1 or equiv such as  $S^2$ , T or 2S, T
  - A1 2 or equiv (note that S, S, T<sup>9</sup> and S, T<sup>3</sup>, S are alternative correct answers)



3 (i) Use  $\csc\theta = \frac{1}{\sin\theta}$ 

Attempt to express equation in terms of  $\sin \theta$ Obtain or clearly imply  $6\sin^2 \theta - 11\sin \theta - 10 = 0$  B1

M1 using  $\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$  or equiv

A1 3 or  $-6\sin^2\theta + 11\sin\theta + 10 = 0$ 

(ii) Attempt solution to obtain at least one value of  $\sin \theta$ 

Obtain -41.8

Obtain -138

[Answer(s) only: award 0 out of 3.]

M1 should be  $s = -\frac{2}{3}, \frac{5}{2}$ 

A1 allow –42 or greater accuracy

A1 **3** or greater accuracy; and no others between -180 and 180



| 4 | <b>(i)</b> | Either:       | Integrate to obtain $k \ln x$<br>Use at least one relevant logarithm property<br>Obtain $k \ln 3 = \ln 81$ and hence $k = 4$                                                  | B1<br>M1<br>A1 <b>3</b> | AG; accurate work required                                                                     |
|---|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|
|   |            | <u>Or 1</u> : | (where solution involves no use of a logarithm pro-<br>Integrate to obtain $k \ln x$<br>Obtain correct explicit expression for $k$ and<br>conclude $k = 4$ with no error seen | B1                      | AG; e.g. $k = \frac{\ln 81}{\ln 6 - \ln 2} = 4$                                                |
|   |            | <u>Or 2</u> : | (where solution involves verification of result by Integrate to obtain $4 \ln x$ Use at least one relevant logarithm property Obtain $\ln 81$ legitimately with no error seen | B1<br>M1                | ubstitution of 4 for $k$ )  AG; accurate work required                                         |
|   | (ii)       | State v       | volume involves $\int \pi (\frac{4}{x})^2 dx$                                                                                                                                 | B1                      | possibly implied                                                                               |
|   |            |               | integral of form $k_1 x^{-1}$                                                                                                                                                 | M1                      | any constant $k_1$ including $\pi$ or not                                                      |
|   |            |               | prrect process for finding volume produced from S                                                                                                                             | M1                      | $\int (k_2 2^2 - k_3 y^2) dx$ , including $\pi$ or not with correct limits indicated; or equiv |
|   |            | Obtain        | $16\pi - \frac{16}{3}\pi$ and hence $\frac{32}{3}\pi$                                                                                                                         | A1 4                    | or exact equiv                                                                                 |
| 5 | (i)        | Attemp        | pt process for finding both critical values                                                                                                                                   | M1                      | squaring both sides to obtain 3 terms on each side or considering 2 different linear           |
|   |            | Obtain        | _4                                                                                                                                                                            | A1                      | eqns/inequalities                                                                              |
|   |            | Obtain        |                                                                                                                                                                               | A1                      |                                                                                                |
|   |            | Attemp        | pt process for solving inequality                                                                                                                                             | M1                      | table, sketch,; needs two critical values; implied by plausible answer                         |
|   |            | Obtain        | $-4 \le x \le \frac{2}{3}$                                                                                                                                                    | A1 5                    | with $\leq$ and not $<$                                                                        |
|   | (ii)       | Use co        | prect process to find value of $ x+2 $ using any value                                                                                                                        | e M1                    | whether part of answer to (i) or not                                                           |
|   |            | Obtain        | $2\frac{2}{3}$ or $\frac{8}{3}$                                                                                                                                               | A1 2                    | dependent on 5 marks awarded in part (i)                                                       |

| Refer to sign change (or equiv for rearranged eqn)  (ii) Obtain correct first iterate  Carry out iteration process Obtain at least 3 correct iterates Obtain 1.05083  [I $\rightarrow$ 1.047198 $\rightarrow$ 1.050871 $\rightarrow$ 1.050809 $\rightarrow$ 1.050826 $\rightarrow$ 1.050827; 1.05 $\rightarrow$ 1.050769 $\rightarrow$ 1.050823 $\rightarrow$ 1.050827 $\rightarrow$ 1.050827; 1.1 $\rightarrow$ 1.054268 $\rightarrow$ 1.051070 $\rightarrow$ 1.050844 $\rightarrow$ 1.050827  (iii) State or imply $\sec^2 2x = 1 + \tan^2 2x$ B1 Relate to earlier equation  Deduce $2x = 1.05083$ and hence 0.525  [SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$ Use iterative process to obtain 0.525  Differentiate to obtain $k_1(3x-1)^3$ Obtain correct $12(3x-1)^3$ Altain or (unsimplified) equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain $\frac{1}{6}$ Altain or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Obtain $\frac{3}{1}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Altain or equiv  Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Altain or equiv  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ Obtain $\frac{3}{4}\pi$ Altain condone degrees here obtain $\frac{3}{4}\pi$                                                                                                                                                                                             | ed or truncated);<br>earranged)    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Carry out iteration process Obtain at least 3 correct iterates Obtain 1.05083  Obtain 1.05083 $[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.050826 \rightarrow 1.050827;$ $1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827;$ $1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827;$ $1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827]$ (iii) State or imply $\sec^2 2x = 1 + \tan^2 2x$ Relate to earlier equation  By halving or doubling an carrying out equivalent Deduce $2x = 1.05083$ and hence $0.525$ B1  Use iterative process to obtain $0.525$ B1  Use iterative process to obtain $0.525$ B1  Obtain correct $12(3x-1)^3$ Substitute 1 to obtain $4x = \frac{1}{2} \cos^{-1}(2x+3)^{-\frac{1}{2}}$ B1  Obtain $\frac{5}{6}$ A1 any constant $\frac{1}{4}$ or (unsimplified) equiv  Integrate to obtain $\frac{1}{2}(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or exact equiv  Integrate to obtain $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 any constant $\frac{1}{2}$ Obtain $\frac{3}{4}$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 any constant $\frac{1}{2}$ Obtain $\frac{3}{4}$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 any constant $\frac{1}{2}$ Obtain $\frac{3}{15}$ A2 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 or equiv  Obtain $\frac{3}{15}$ A2 or equiv  Obtain $\frac{3}{15}$ A3 in radians now  A4 and or equiv  Obtain $\frac{3}{15}$ A5 and or equiv  Obtain $\frac{3}{15}$ A1 or equiv  Obtain $\frac{3}{15}$ A1 or equiv  Obtain $\frac{3}{15}$ A1 in radians now                                                                                                                                                                            |                                    |
| (iii) State or imply $\sec^2 2x = 1 + \tan^2 2x$ Relate to earlier equation  Deduce $2x = 1.05083$ and hence $0.525$ [SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$ Use iterative process to obtain $0.525$ B1  Use iterative process to obtain $0.525$ B1  Obtain correct $12(3x-1)^3$ Substitute 1 to obtain $96$ Attempt to find $x$ -coordinate of $0$ Obtain correct $\frac{1}{15}(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Al or (unsimplified) equiv  Integrate to obtain $k_2(3x-1)^5$ Al or exact equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Al or equiv  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 by halving or doubling an carrying out equivalent of M1 by halving or doubling an carrying out equivalent of and by halving or doubling an carrying out equivalent of any in equivalent $1 = 1.5$ Al $1 = 1.5$ Al $1 = 1.5$ Al or (unsimplified) equivalent $1 = 1.5$ Al or equivalent $1 = 1.5$ Al or (unsimplified) equivalent $1 = 1.5$ Al or (unsimplied) equivalent $1 = 1.5$ Al or (unsimplified) equivalent $1 $ | es in all so far                   |
| Deduce $2x = 1.05083$ and hence $0.525$ [SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$ Use iterative process to obtain $0.525$ B1  Use iterative process to obtain $0.525$ B1  B1  2 or greater accuracy  M1 any constant $k_1$ Obtain correct $12(3x-1)^3$ A1 or (unsimplified) equiv  Substitute 1 to obtain $96$ Attempt to find $x$ -coordinate of $Q$ Obtain $\frac{5}{6}$ A1 or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 or (unsimplified) equiv  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16)$ and hence) $\frac{4}{5}$ A1 or equiv  10  8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  A1 or equiv  A1 or equiv  Obtain $\frac{1}{4}\pi$ or 0.785  A1 or equiv  M1 condone sin/cos muddles  A1 3 in radians now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nswer to ( <b>ii</b> ) or          |
| [SC: Rearrange to obtain $x=\frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$ B1  Use iterative process to obtain $0.525$ B1  10  2 or greater accuracy]  7 Differentiate to obtain $k_1(3x-1)^3$ M1 any constant $k_1$ Obtain correct $12(3x-1)^3$ A1 or (unsimplified) equiv  Substitute 1 to obtain 96  Attempt to find $x$ -coordinate of $Q$ Obtain $\frac{5}{6}$ A1 or exact equiv  Integrate to obtain $k_2(3x-1)^5$ M1 any constant $k_2$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 attempt to find shaded area by correct process  Obtain $(\frac{32}{15}-\frac{1}{2}\times\frac{1}{6}\times16$ and hence) $\frac{4}{5}$ A1 or equiv  10  8 (i) Obtain $R=3\sqrt{2}$ or $R=\sqrt{18}$ or $R=4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  A1 in radians now  (ii) a Equate $x-\alpha$ to $\frac{1}{2}\pi$ or attempt solution  of $3\cos x+3\sin x=0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t iteration process                |
| The iterative process to obtain 0.525  B1 2 or greater accuracy]  7 Differentiate to obtain $k_1(3x-1)^3$ Obtain correct $12(3x-1)^3$ A1 or (unsimplified) equiv Substitute 1 to obtain 96  Attempt to find x-coordinate of Q  Obtain $\frac{5}{6}$ A1 or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or (unsimplified) equiv Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16)$ and hence) $\frac{4}{5}$ A1 or equiv  N1 integral – triangle or equiv  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16)$ and hence) $\frac{4}{5}$ A1 or equiv  N1 integral – triangle or equiv  Obtain $\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ A1 or equiv  Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Obtain correct $12(3x-1)^3$ Substitute 1 to obtain 96  Attempt to find $x$ -coordinate of $Q$ Obtain $\frac{5}{6}$ All or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ All or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process  Obtain $(\frac{32}{15}-\frac{1}{2}\times\frac{1}{6}\times16)$ and hence) $\frac{4}{5}$ All or equiv  100  8 (i) Obtain $R=3\sqrt{2}$ or $R=\sqrt{18}$ or $R=4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  All or equiv  Integral – triangle or equiv  Integral – triangle or equiv  Attempt to find value of $\alpha$ Obtain $\frac{32}{15}-\frac{1}{2}\times\frac{1}{6}\times16$ and hence) $\frac{4}{5}$ All or equiv  Integral – triangle or equiv  Integral – triangle or equiv  Integral – triangle or equiv  Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  All or integral – triangle or equiv                                                                                                                                                                                                                                                                                                               |                                    |
| Substitute 1 to obtain 96 Attempt to find $x$ -coordinate of $Q$ Obtain $\frac{5}{6}$ Al or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Al or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Al or exact equiv  M1 integral – triangle or equiv  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Al or equiv  II0  8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  Al 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| Attempt to find $x$ -coordinate of $Q$ M1 using tangent with $y=0$ Obtain $\frac{5}{6}$ A1 or exact equiv  Integrate to obtain $k_2(3x-1)^5$ M1 any constant $k_2$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or (unsimplified) equiv Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 Attempt to find shaded area by correct process Obtain $(\frac{32}{15}-\frac{1}{2}\times\frac{1}{6}\times16$ and hence) $\frac{4}{5}$ A1 or equiv  8 (i) Obtain $R=3\sqrt{2}$ or $R=\sqrt{18}$ or $R=4.24$ B1 or equiv Attempt to find value of $\alpha$ M1 condone sin/cos muddles Obtain $\frac{1}{4}\pi$ or 0.785 A1 3 in radians now  (ii) a Equate $x-\alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x+3\sin x=0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| Obtain $\frac{5}{6}$ Al or exact equiv  Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Al or (unsimplified) equiv  Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Al integral – triangle or equiv  Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ Al or (unsimplified) equiv  Integral – triangle or equiv  Al or exact equiv  M1 integral – triangle or equiv  Integral – triangle or equiv  Integral – triangle or equiv  Al or exact equiv  M1 integral – triangle or equiv  Integral – triangle or equiv  Al or equiv  Integral – triangle or equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Integrate to obtain $k_2(3x-1)^5$ M1 any constant $k_2$ Obtain correct $\frac{1}{15}(3x-1)^5$ A1 or (unsimplified) equiv Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ A1 Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$ A1 integral – triangle or equiv Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ B1 or equiv Attempt to find value of $\alpha$ M1 condone sin/cos muddles Obtain $\frac{1}{4}\pi$ or 0.785 A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or using gradient                  |
| Obtain correct $\frac{1}{15}(3x-1)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence})$ 8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  B1 or equiv M1 condone sin/cos muddles A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence})$ 8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  B1 or equiv M1 condone sin/cos muddles A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence}) \frac{4}{5}$ M1 integral – triangle or equivalent or          |                                    |
| Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence})$ $\frac{4}{5}$ A1 or equiv  10  8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  A1 or equiv M1 condone sin/cos muddles A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iv                                 |
| 8 (i) Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of $\alpha$ Obtain $\frac{1}{4}\pi$ or 0.785  Al 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution  of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| Attempt to find value of $\alpha$ M1 condone sin/cos muddles Obtain $\frac{1}{4}\pi$ or 0.785 A1 3 in radians now (ii) a Equate $x-\alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Attempt to find value of $\alpha$ M1 condone sin/cos muddles Obtain $\frac{1}{4}\pi$ or 0.785 A1 3 in radians now (ii) a Equate $x-\alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Obtain $\frac{1}{4}\pi$ or 0.785 A1 3 in radians now  (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and dograds                        |
| (ii) a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and degrees                        |
| of $3\cos x + 3\sin x = 0$ M1 condone degrees here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Obtain $\frac{3}{4}\pi$ A1 2 or, $-\frac{5}{4}\pi$ , $-\frac{1}{4}\pi$ , $\frac{7}{4}\pi$ ,;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ; in radians now                   |
| <b>b</b> Attempt correct process to find value of $3x - \alpha$ *M1 with attempt at rearranging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $rac{1}{1} = \frac{8}{9} \sqrt{6}$ |
| Obtain at least one correct exact value of $3x - \alpha$ A1 $\pm \frac{1}{6}\pi, \pm \frac{11}{6}\pi,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
| Attempt at least one positive value of $x$ M1 dep *M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Obtain $\frac{1}{36}\pi$ A1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |

| maybe to this f tch; correct |
|------------------------------|
|                              |
|                              |
| efficients of x              |
| or lues of $x$ and           |
| ; or equiv                   |
|                              |
| e A1 <b>2</b> ]              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
| _                            |

| 1 | Either:                                                                          | Obtain $\frac{1}{3}a$                                                                                                                              | B1       |                                                                                             | condone $ x  = \frac{1}{3}a$                                                                                                                                                                                                                               |
|---|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                  | Attempt solution of linear eqn                                                                                                                     | M1       |                                                                                             | with signs of $3x$ and $5a$ different; allow M1 only if $a$ given particular value and no recovery occurs; allow M1 only if $a$ in terms of $x$ attempted; allow M1 only if double inequality attempted but with no recovery to state actual values of $x$ |
|   |                                                                                  | Obtain −3 <i>a</i>                                                                                                                                 | A1       | 3                                                                                           | as final answer                                                                                                                                                                                                                                            |
|   |                                                                                  | $ain 9x^2 + 24ax + 16a^2 = 25a^2$                                                                                                                  | B1       |                                                                                             |                                                                                                                                                                                                                                                            |
|   | Atte                                                                             | empt solution of 3-term quad eqn                                                                                                                   | M1       |                                                                                             | as far as substitution into correct quadratic formula or correct factorisation of their quadratic; allow M1 only if <i>a</i> given particular value                                                                                                        |
|   | Obt                                                                              | ain $-3a$ and $\frac{1}{3}a$                                                                                                                       | A1       | (3)                                                                                         | or equivs; as final answers; and no others                                                                                                                                                                                                                 |
| 2 | Draw gr                                                                          | raph showing reflection in a                                                                                                                       |          |                                                                                             |                                                                                                                                                                                                                                                            |
|   | horizontal axis Draw graph showing translation                                   |                                                                                                                                                    | M1<br>M1 |                                                                                             | parallel to <i>x</i> -axis, in either direction; independent of first M1; not earned if curve still passes through <i>O</i> but ignore other coordinates given at this stage                                                                               |
|   | must a                                                                           | more or less) correct graph which at least reach the negative <i>x</i> -axis, cross it, at left end of curve  -5, 24) and (-3, 0) wherever located | A1       |                                                                                             | but ignoring no or wrong stretch in y-dir'n;                                                                                                                                                                                                               |
|   | State (                                                                          |                                                                                                                                                    | B1       | 4                                                                                           | condone graph existing only for $x < 0$ ; consider shape of curve and ignore coordinates given or clearly implied by sketch; allow for                                                                                                                     |
|   | State (-                                                                         |                                                                                                                                                    |          | _                                                                                           | coordinates whatever sketch looks like; allow if in solution with no sketch                                                                                                                                                                                |
|   |                                                                                  |                                                                                                                                                    |          | 4                                                                                           |                                                                                                                                                                                                                                                            |
| 3 | Either:                                                                          | State or imply $8\pi r$ as derivative Attempt to connect 12 and their                                                                              | B1       |                                                                                             | or equiv                                                                                                                                                                                                                                                   |
|   |                                                                                  | derivative                                                                                                                                         | M1       |                                                                                             | numerical or algebraic; using multiplication or division                                                                                                                                                                                                   |
|   | Obtain $8\pi \times 150 \times 12$ and hence $45000$ or $14400\pi$ or $14000\pi$ | A1                                                                                                                                                 | 3        | or equiv; or greater accuracy (45239);<br>condone absence of units or use of wrong<br>units |                                                                                                                                                                                                                                                            |
|   | Or: Use                                                                          | $e r = 12t \text{ to show } S = 576\pi t^2$                                                                                                        | B1       |                                                                                             |                                                                                                                                                                                                                                                            |
|   | Atte                                                                             | empt $\frac{dS}{dt}$ and substitute for $t$                                                                                                        | M1       |                                                                                             |                                                                                                                                                                                                                                                            |
|   | Obt                                                                              | ain $1152\pi \times \frac{150}{12}$ and hence                                                                                                      |          |                                                                                             |                                                                                                                                                                                                                                                            |
|   | 45                                                                               | $000 \text{ or } 14400\pi \text{ or } 14000\pi$                                                                                                    | A1       | (3)                                                                                         | or equiv; or greater accuracy (45239);<br>condone absence of units or use of wrong<br>units                                                                                                                                                                |

| 4 | <b>(i)</b> | Obtain $R = 25$<br>Attempt to find value of $\alpha$<br>Obtain $16.3^{\circ}$                   | B1<br>M1      | 3    | allow $\sqrt{625}$ or value rounding to 25 implied by correct answer or its complement; allow sin/cos muddles; allow use of radians for this mark; condone $\sin \alpha = 7$ , $\cos \alpha = 24$ in the working or greater accuracy 16.260; must be degrees now; allow 16° here |
|---|------------|-------------------------------------------------------------------------------------------------|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (ii)       | Show correct process for finding one answer Obtain (28.69 – 16.26 and hence) 12.4°              | <br>:M1<br>A1 |      | even if leading to answer outside 0 to 360 or greater accuracy 12.425 or anything rounding to 12.4                                                                                                                                                                               |
|   |            | Show correct process for finding second answer Obtain (151.31 – 16.26 and hence) 135° or 135.1° | M1<br>A1      | 4    | even if further incorrect answers produced or greater accuracy 135.054; and no other                                                                                                                                                                                             |
|   |            | [SC: No working shown and 2 correct angle                                                       | s stat        | ed - | between 0 and 360 B1 only in part (ii)]                                                                                                                                                                                                                                          |
| 5 |            | Integrate to obtain form $k(3x-2)^{\frac{1}{2}}$                                                | M1            |      | any non-zero constant <i>k</i> ; or equiv involving substitution                                                                                                                                                                                                                 |
|   |            | Obtain correct $4(3x-2)^{\frac{1}{2}}$                                                          | A1            |      | or (unsimplified) equiv such as $\frac{6(3x-2)^{\frac{1}{2}}}{3 \times \frac{1}{2}}$                                                                                                                                                                                             |
|   |            | Apply limits and attempt solution for <i>a</i>                                                  | M1            |      | assuming integral of form $k(3x-2)^n$ ;                                                                                                                                                                                                                                          |
|   |            | Obtain $a = 9$                                                                                  | A1            |      | taking solution as far as removal of root; with subtraction the right way round; if sub'n used, limits must be appropriate (this answer written down with no working scores 0/4 so far but all subsequent marks are available)                                                   |
|   |            | State or imply formula $\int \frac{36\pi}{3x-2} dx$                                             | B1            |      | or (unsimplified) equiv; condone absence of                                                                                                                                                                                                                                      |
|   |            | Integrate to obtain form $k \ln(3x-2)$                                                          | *M1           | Ĺ    | $dx$ ; allow B1 retroactively if $\pi$ absent here but inserted later any constant $k$ including $\pi$ or not; condone absence of brackets                                                                                                                                       |
|   |            | Obtain $12\pi \ln(3x-2)$ or $12\ln(3x-2)$                                                       | A1v           | 1    | following their integral of form $\int \frac{k}{3x-2} dx$                                                                                                                                                                                                                        |
|   |            | Apply limits the correct way round                                                              | M1            |      | dep *M; use of limit 1 is implied by absence of second term; allow use of limit <i>a</i>                                                                                                                                                                                         |
|   |            | Obtain $12\pi \ln 25$ (or $24\pi \ln 5$ )                                                       | A1            | 9    | or exact equiv but not with $\ln 1$ remaining; condone answers such as $\pi 12 \ln 25$ and $12 \ln 25\pi$                                                                                                                                                                        |

- 6 (i) Attempt use of quotient rule
- M1 or equiv; allow numerator wrong way round but needs minus sign in numerator; for M1 condone 'minor' errors such as sign slips,
  - absence of square in denominator, and absence of some brackets
- Obtain  $\frac{3(x^3 4x^2 + 2) (3x + 4)(3x^2 8x)}{(x^3 4x^2 + 2)^2}$  All
- or equiv; allow A1 if brackets absent from
  - 3x+4 term or from  $3x^2-8x$  term but not from both
- Equate numerator to 0 and attempt simplification
- M1 at least as far as removing brackets, condoning sign or coeff slips; or equiv
- Obtain  $-6x^3 + 32x + 6 = 0$  or equiv and hence  $x = \sqrt[3]{\frac{16}{3}x + 1}$
- A1 **4** AG; necessary detail needed (i.e. at least one intermediate step) and following first derivative with correct numerator

-----

M1

- (ii) Obtain correct first iterate having used initial value 2.4
- B1 showing at least 3 dp (2.398 or 2.399 or greater accuracy 2.39861...)
- Apply iterative process
- to obtain at least 3 iterates in all; implied by plausible, converging sequence of values; having started with any initial non-negative value
- Obtain at least 3 correct iterates from their starting point
- A1 allowing recovery after error A1 value required to exactly 3 dp
- Obtain 2.398 Obtain -1.552
- A1 5 value required to exactly 3 dp; allow if apparently obtained by substitution of 2.4; answers only with no iterates shown gets 0/5
- $[2.4 \rightarrow 2.3986103 \rightarrow 2.3981808 \rightarrow 2.3980480]$

| _ | (•)   | $G_{i}$ ( $1$ ( $2$ , $0$ ) $0$                                           | D.1    |           | 2 . 0 . 8                                                             |
|---|-------|---------------------------------------------------------------------------|--------|-----------|-----------------------------------------------------------------------|
| 7 | (i)   | State $ln(x^2 + 8) = 8$                                                   | B1     |           | or equiv such as $x^2 + 8 = e^8$                                      |
|   |       | Attempt solution involving e <sup>8</sup>                                 | M1     |           | by valid (exact) method at least as                                   |
|   |       |                                                                           |        |           | far as $x^2 =$                                                        |
|   |       | Obtain $\sqrt{e^8 - 8}$                                                   | A1     | 3         | or exact equiv; and no other answer                                   |
|   | (ii)  | State f only                                                              | <br>В1 | -         |                                                                       |
|   |       | State $e^x$ or $e^y$                                                      | B1     |           | or equiv; allow if g, or f and g, chosen                              |
|   |       | Indicate domain is all real numbers                                       | B1     | 3         |                                                                       |
|   |       |                                                                           |        | _         |                                                                       |
|   | (iii) | Attempt use of chain rule                                                 | M1     |           | whether applied to gf or fg; or equiv such as                         |
|   |       |                                                                           |        |           | use of product rule on $(\ln x)(\ln x) + 8$                           |
|   |       | Obtain $\frac{2 \ln x}{x}$                                                |        |           |                                                                       |
|   |       | Obtain ${x}$                                                              | A1     |           | or equiv                                                              |
|   |       | Obtain 6e <sup>-3</sup>                                                   | Δ1     | 3         | or exact equiv but not including ln                                   |
|   |       |                                                                           |        |           |                                                                       |
|   | (iv)  | Attempt evaluation using y attempts                                       | M1     |           | with coeffs 1, 4 and 2 occurring at least once each; whether fg or gf |
|   |       | Obn $k(\ln 24 + 4\ln 12 + 2\ln 8 + 4\ln 12 + \ln 24)$                     | A1     |           | any constant k                                                        |
|   |       | Use $k = \frac{2}{3}$ and obtain 20.3                                     | A 1    | 3         | or greater accuracy (20.26) but must                                  |
|   |       | $\frac{1}{3} \text{ and obtain 20.5}$                                     | 711    |           | round to 20.3                                                         |
|   |       | [Note that use of Simpson's rule between 0 a doubling of result is equiv; | and 4  | wit       | h two strips, coeffs 1, 4, 1, followed by                             |
|   |       | SC: Use of Simpson's rule between 0 and 4                                 | l with | fou       | ur strips followed by doubling of result -                            |
|   |       | allow 3/3 - answer is 20.2 (20.2327                                       | 7)]    |           |                                                                       |
|   |       |                                                                           |        | <b>12</b> |                                                                       |

**8** (a) (i) Draw at least two correctly shaped branches, one for y > 0, one for y < 0 M1

Draw four correct branches

Draw (more or less) correct graph

otherwise located anywhere including x < 0 now (more or less) correctly located;

with some indication of horiz scale (perhaps only  $4\pi$  indicated); with asymptotic behaviour shown (but not too fussy about branch drifting slightly away from asymptotic value nor about branch touching asymptote) but branches must not obviously cross asymptotic value; with -1 and 1 shown (or implied by presence of sine curve or by presence of only one of them on a reasonably accurate sketch); no need for vertical (dotted) lines drawn to indicate asymptotic values

\_\_\_\_\_\_

M1

A1 3

(ii) State expression of form  $k\pi + \alpha$  or

 $k\pi - \alpha$  or  $\alpha = k\pi + \beta$  or  $\alpha = k\pi - \beta$  M1

any non-zero numerical value of *k*; M0 if degrees used

State  $3\pi - \alpha$ 

A1 2 or unsimplified equiv

**(b) (i)** State  $\frac{2 \tan \theta}{1 - \tan^2 \theta}$ 

B1 1 or equiv such as  $\frac{t+t}{1-t\times t}$  or  $\frac{2\tan A}{1-\tan^2 A}$ 

(ii) State or imply  $\tan \phi = \frac{1}{4}$ 

B1 or equiv such as  $\frac{1}{\tan \phi} = 4$ 

Attempt to evaluate  $\tan 2\phi$  or  $\cot 2\phi$ 

perhaps within attempt at complete expression but using correct identity

Obtain  $\tan 2\phi = \frac{8}{15}$  or  $\cot 2\phi = \frac{15}{8}$  A1

or (unsimplified) equiv; may be implied

Attempt to evaluate value of  $\tan 4\phi$  M1

perhaps within attempt at complete expression; condone only minor slip(s) in use of relevant identity

Obtain  $\frac{240}{161}$ 

A1 or (unsimplified) exact equiv; may be implied

Obtain final answer  $\frac{225}{322}$ 

A1 6 or exact equiv

[SC – (use of calculator and little or no working)

State or imply  $\tan \phi = \frac{1}{4}$  B1; Obtain  $\tan 2\phi = \frac{8}{15}$  B1; Obtain  $\frac{225}{322}$  B1 (max 3/6)

State or imply  $\tan \phi = \frac{1}{4}$  B1; Obtain  $\frac{225}{322}$  B2 (max 3/6)

12

- (a) Differentiate to obtain  $k_1 e^{2x} + k_2 e^{-2x}$
- M1any constants  $k_1$  and  $k_2$  but derivative
  - must be different from f(x); condone presence of +c

- Obtain  $2e^{2x} + 6e^{-2x}$

**A**1

M1

M1

- or unsimplified equiv; no +c now
- Refer to  $e^{2x} > 0$  and  $e^{-2x} > 0$  or to more general comment about exponential functions
- A1 3 or equiv (which might be sketch of y = f(x) with comment that gradient is positive or might be sketch of y = f'(x) with comment that y > 0; AG
- **(b)** Differentiate to obtain  $k_3 e^{2x} + k_4 e^{-2x}$
- any constants  $k_3$  and  $k_4$  but second derivative must be different from their first derivative; condone presence of +c
- Obtain  $4e^{2x} 12e^{-2x}$ Attempt solution of f''(x) > 0 or of
- A1 or unsimplified equiv; no +c now
- f(x) > 0 or of corresponding eqn
- at least as far as term involving  $e^{4x}$  or  $e^{-4x}$
- Obtain  $x > \frac{1}{4} \ln 3$ **A**1 Confirm both give same result
  - В1 5 AG; necessary detail needed; either by solving the other or by observing that same inequality involved (just noting that f''(x) = 4f(x) is sufficient)
- (ii) Differentiate to obtain  $2e^{2x} 2ke^{-2x}$
- **B**1 or unsimplified equiv
- Attempt to find x-coordinate of stationary pt M1
- equating to 0 and reaching  $e^{4x} = ...$  or equiv or equiv such as  $e^{2x} = \sqrt{k}$
- Obtain  $e^{4x} = k$  and hence  $\frac{1}{4} \ln k$  or equiv A1 Substitute and attempt simplification M1
- using valid processes but allow if only limited progress [note that question can be successfully concluded (without actually finding x) by substitution of  $e^{2x} = \sqrt{k}$ and  $e^{-2x} = \frac{1}{\sqrt{L}}$
- Obtain  $g(x) \ge 2\sqrt{k}$  or  $y \ge 2\sqrt{k}$
- A1 5 or similarly simplified equiv with  $\geq$  not >

| 1 | (i)  | Obtain integral of form $ke^{2x+1}$                          | M1         |          | any non-zero constant <i>k</i> different from 6;                                                                                                                                                |
|---|------|--------------------------------------------------------------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      |                                                              |            |          | using substitution $u = 2x + 1$ to obtain $ke^u$ earns M1 (but answer to be in terms of $x$ )                                                                                                   |
|   |      | Obtain correct $3e^{2x+1}$                                   | <b>A</b> 1 |          | or equiv such as $\frac{6}{2}e^{2x+1}$                                                                                                                                                          |
|   | (ii) | Obtain integral of form $k_1 \ln(2x+1)$                      | M1         |          | any non-zero constant $k_1$ ; allow if brackets                                                                                                                                                 |
|   |      |                                                              |            |          | absent; $k_1 \ln u$ (after sub'n) earns M1                                                                                                                                                      |
|   |      | Obtain correct $5\ln(2x+1)$                                  | <b>A</b> 1 |          | or equiv such as $\frac{10}{2}\ln(2x+1)$ ; condone                                                                                                                                              |
|   |      | Include + $c$ at least once                                  | B1         | 5        | brackets rather than modulus signs but brackets or modulus signs must be present (so that 5 ln 2x+1 earns A0) anywhere in the whole of question 1; this mark available even if no marks awarded |
|   |      |                                                              |            | 5        | for integration                                                                                                                                                                                 |
|   |      |                                                              |            |          |                                                                                                                                                                                                 |
| 2 |      | A multi-sure of the turn of amount on a comment.             |            |          |                                                                                                                                                                                                 |
| 2 |      | Apply one of the transformations correctly to their equation | B1         |          |                                                                                                                                                                                                 |
|   |      | Obtain correct $-3 \ln x + \ln 4$                            | B1         |          | or equiv                                                                                                                                                                                        |
|   |      | Show at least one logarithm property                         | M1         |          | correctly applied to their equation of resulting curve (even if errors have been made earlier)                                                                                                  |
|   |      | Obtain $y = \ln(4x^{-3})$                                    | A1         | 4        | or equiv of required form; $\ln 4x^{-3}$ earns A1; correct answer only earns 4/4; condone absence of $y =$                                                                                      |
|   |      |                                                              |            | 4        | •                                                                                                                                                                                               |
|   |      |                                                              |            |          |                                                                                                                                                                                                 |
| 3 | (a)  | State $14\sin\alpha\cos\alpha = 3\sin\alpha$                 | B1         |          | or unsimplified equiv such as $7(2\sin\alpha\cos\alpha) = 3\sin\alpha$                                                                                                                          |
|   |      | Attempt to find value of $\cos \alpha$                       | M1         |          | by valid process; may be implied                                                                                                                                                                |
|   |      | Obtain $\frac{3}{14}$                                        | A1         | 3        | exact answer required; ignore subsequent work to find angle                                                                                                                                     |
|   | (b)  | Attempt use of identity for $\cos 2\beta$                    | M1         |          | of form $\pm 2\cos^2 \beta \pm 1$ ; initial use of $\cos^2 \beta - \sin^2 \beta$ needs attempt to express $\sin^2 \beta$ in terms of $\cos^2 \beta$ to earn M1                                  |
|   |      | Obtain $6\cos^2\beta + 19\cos\beta + 10$                     | A1         |          | or unsimplified equiv or equiv involving $\sec \beta$                                                                                                                                           |
|   |      | Attempt solution of 3-term quadratic eqn                     | M1         |          | for $\cos \beta$ or (after adjustment) for $\sec \beta$                                                                                                                                         |
|   |      | Use $\sec \beta = \frac{1}{\cos \beta}$ at some stage        | M1         |          | or equiv                                                                                                                                                                                        |
|   |      | Obtain $-\frac{3}{2}$                                        | A1         | <b>5</b> | or equiv; and (finally) no other answer                                                                                                                                                         |

| 1 | (i)   | Draw sketch of $y = (x-2)^4$                                  | *B1        |       | touching positive <i>x</i> -axis and extending at                                                                                                                                                                                     |
|---|-------|---------------------------------------------------------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       | Draw straight line with positive gradient  Indicate two roots | *B1        |       | least as far as the y-axis; no need for 2 or 16 to be marked; ignore wrong intercepts at least in first quadrant and reaching positive y-axis; assess the two graphs independently of each other AG; dep *B *B and two correct graphs |
|   |       | indicate two roots                                            | Dī         | 3     | which meet on the <i>y</i> -axis;                                                                                                                                                                                                     |
|   |       | raa B. J. J. C. ( p) <sup>4</sup>                             |            |       | indicated in words or by marks on sketch                                                                                                                                                                                              |
|   |       | [SC: Draw sketch of $y = (x-2)^4 - x - 16$ as                 | nd inc     | licat | e the two roots: B1 (i.e. max 1 mark)]                                                                                                                                                                                                |
|   | (ii)  | State 0 or $x = 0$                                            | B1         | 1     | not merely for coordinates (0, 16)                                                                                                                                                                                                    |
|   | (iii) | Obtain correct first iterate                                  | B1         |       | to at least 3 dp; any starting value (> -16)                                                                                                                                                                                          |
|   |       | Show correct iteration process                                | M1         |       | producing at least 3 iterates in all; may be implied by plausible converging values                                                                                                                                                   |
|   |       | Obtain at least 3 correct iterates                            | A1         |       | allowing recovery after error; iterates given to only 3 d.p. acceptable; values may be rounded or truncated                                                                                                                           |
|   |       | Obtain 4.118                                                  | A1         | 4     | answer required to exactly 3 dp; A0 here if number of iterates is not enough to justify 4.118; attempt consisting of answer only earns 0/4                                                                                            |
|   |       | $[0 \rightarrow 4 \rightarrow 4.114743 \rightarrow 4.117769]$ | ) <i>→</i> | 4.    |                                                                                                                                                                                                                                       |
|   |       | $1 \rightarrow 4.030543 \rightarrow 4.115549 \rightarrow$     | 4.117      | 790   | → 4.117849;                                                                                                                                                                                                                           |
|   |       | $2 \rightarrow 4.059767 \rightarrow 4.116321 \rightarrow$     | 4.11       | 781   | $1 \rightarrow 4.117850;$                                                                                                                                                                                                             |
|   |       | $3 \rightarrow 4.087798 \rightarrow 4.117060 \rightarrow$     | 4.11       | 783   | $0 \rightarrow 4.117850;$                                                                                                                                                                                                             |
|   |       | $4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow$     | 4.11       | 784   | $9 \rightarrow 4.117851;$                                                                                                                                                                                                             |
|   |       | $5 \rightarrow 4.140695 \rightarrow 4.118452 \rightarrow$     | 4.11       | 786   | $7 \rightarrow 4.117851$                                                                                                                                                                                                              |
|   |       |                                                               |            | 8     |                                                                                                                                                                                                                                       |
|   |       |                                                               |            |       |                                                                                                                                                                                                                                       |

5 Attempt use of product rule

\*M1 to produce  $k_1 x \ln(4x-3) + \frac{k_2 x^2}{4x-3}$  form

Obtain  $2x \ln(4x-3)$ 

A1

Obtain ...  $+\frac{4x^2}{4x-3}$ 

A1 or equiv

Attempt second use of product rule
Attempt use of quotient (or product) rule

\*M1 \*M1 allow numerator the wrong way round

 $2\ln(4x-3) + \frac{8x}{4x-3} + \frac{8x(4x-3)-16x^2}{(4x-3)^2}$ 

A1 or equiv

Substitute 2 into attempt at second deriv Obtain  $2 \ln 5 + \frac{96}{25}$ 

M1 dep \*M \*M \*M

A1 8 or exact equiv consisting of two terms

8

6 <u>Method 1</u>: (Differentiation; assume value  $\frac{10}{3}$ ; eqn of tangent; through origin)

Differentiate to obtain  $k(3x-5)^{-\frac{1}{2}}$ 

M1 any constant k

Obtain  $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$ 

A<sub>1</sub> or equiv

Attempt to find equation of tangent at P

and attempt to show tangent passing

through origin

M1assuming value  $\frac{10}{3}$ ; or equiv

Obtain  $y = \frac{3}{2\sqrt{5}}x$  and confirm that

tangent passes through O

**A**1 AG; necessary detail needed

<u>Method 2</u>: (Differentiation; equate  $\frac{y \text{ change}}{x \text{ change}}$ to deriv; solve for x)

Differentiate to obtain  $k(3x-5)^{-\frac{1}{2}}$ 

M1any constant k

Obtain  $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$ 

**A**1 or equiv

Equate  $\frac{y \text{ change}}{x \text{ change}}$  to deriv and attempt solution M1

Obtain  $\frac{\sqrt{3x-5}}{x} = \frac{3}{2}(3x-5)^{-\frac{1}{2}}$  and solve to

obtain  $\frac{10}{3}$  only

**A**1

Method 3: (Differentiation; find x from y = f'(x) x and  $y = \sqrt{3x-5}$ )

Differentiate to obtain  $k(3x-5)^{-\frac{1}{2}}$ 

M1 any constant k

Obtain  $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$ 

**A**1 or equiv

State  $y = \frac{3}{2}(3x-5)^{-\frac{1}{2}}x$ ,  $y = \sqrt{3x-5}$ ,

eliminate y and attempt solution

M1condone this attempt at 'eqn of tangent'

Obtain  $\frac{10}{3}$  only

**A**1

Method 4: (No differentiation; general line through origin to meet curve at one point only)

Eliminate y from equations y = kx and

 $y = \sqrt{3x-5}$  and attempt formation of

quadratic eqn

M1

Obtain  $k^2 x^2 - 3x + 5 = 0$ 

**A**1 or equiv

Equate discriminant to zero to find k

Obtain  $k = \frac{3}{2\sqrt{5}}$  or equiv and confirm  $x = \frac{10}{3}$  A1

<u>Method 5</u>: (No differentiation; use coords of *P* to find eqn of *OP*; confirm meets curve once)

Use coordinates  $(\frac{10}{3}, \sqrt{5})$  to obtain  $y = \frac{3\sqrt{5}}{10}x$ 

or equiv as equation of OP

Eliminate y from this eqn and eqn of curve

and attempt quadratic eqn

should be  $9x^2 - 60x + 100 = 0$  or equiv M1

Attempt solution or attempt discriminant M1

Confirm  $\frac{10}{3}$  only or discriminant = 0

| T71.1  |    |
|--------|----|
| Eithei | •• |
| Little |    |

| Integrate to obtain $k(3x-5)^{\frac{3}{2}}$                                          | *M1         | any constant k                       |
|--------------------------------------------------------------------------------------|-------------|--------------------------------------|
| Obtain correct $\frac{2}{9}(3x-5)^{\frac{3}{2}}$                                     | A1          |                                      |
| Apply limits $\frac{5}{3}$ and $\frac{10}{3}$                                        | M1          | dep *M; the right way round          |
| Make sound attempt at triangle area and calculate (triangle area) minus (their area  |             |                                      |
| under curve)                                                                         | M1          | or equiv                             |
| Obtain $\frac{10}{6}\sqrt{5} - \frac{10}{9}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$ | A1 <b>9</b> | or exact equiv involving single term |
| <u>Or</u> :                                                                          |             |                                      |
| Arrange to $x = \dots$ and integrate to                                              |             |                                      |
| obtain $k_1 y^3 + k_2 y$ form                                                        | *M1         |                                      |
| Obtain $\frac{1}{9}y^3 + \frac{5}{3}y$                                               | A1          |                                      |
| Apply limits 0 and $\sqrt{5}$                                                        | M1          | dep *M; the right way round          |
| Make sound attempt at triangle area and calculate (their area from integration)      |             |                                      |
| minus (triangle area)                                                                | M1          |                                      |
| Obtain $\frac{20}{9}\sqrt{5} - \frac{5}{3}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$  | A1 (9)      | or exact equiv involving single term |

9

7 (i) Either: Attempt solution of at least one linear eq'n of form 
$$ax + b = 12$$

linear eq'n of form ax + b = 12

M1

Obtain  $\frac{1}{3}$ 

A2 3 and (finally) no other answer

Or: Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at g(x+2) on LHS and squaring

12 or -12 on RHS

M1

B1

Obtain  $\frac{1}{3}$ 

A2 (3) and (finally) no other answer

(ii) Either: Obtain 3(3x+5)+5 for h Attempt to find inverse function

M1of function of form ax + b

Obtain  $\frac{1}{9}(x-20)$ 

A1 3 or equiv in terms of x

Or: State or imply  $g^{-1}$  is  $\frac{1}{3}(x-5)$ 

Attempt composition of g<sup>-1</sup> with g<sup>-1</sup>

M1

Obtain  $\frac{1}{9}(x-5) - \frac{5}{3}$ 

A1 (3) or more simplified equiv in terms of x

(iii) State  $x \le 0$ 

B2 **2** give B1 for answer x < 0

8

| 8 (i)     | Differentiate to obtain form $ke^{-0.014t}$<br>Obtain $5.6e^{-0.014t}$ or $-5.6e^{-0.014t}$<br>Obtain $4.9$ or $-4.9$ or $4.87$ or $-4.87$ | M1<br>A1<br>A1 | 3       | any constant <i>k</i> different from 400 or (unsimplified) equiv but not greater accuracy; allow if final statement seems contradictory; answer only earns 0/3 – differentiation is needed |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)      | Either: State or imply $M_2 = 75e^{kt}$<br>Attempt to find formula for $M_2$                                                               | B1<br>M1       |         | or equiv                                                                                                                                                                                   |
|           | Obtain $M_2 = 75e^{0.047t}$<br>Equate masses and attempt                                                                                   | A1             |         | or equiv such as $75e^{(\frac{1}{10}\ln{\frac{8}{5}})t}$                                                                                                                                   |
|           | rearrangement                                                                                                                              | M1             |         | as far as equation with e appearing once                                                                                                                                                   |
|           | Obtain $e^{0.061t} = \frac{16}{3}$                                                                                                         | A1             | 5       | or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii                                                                 |
|           | Or: State or imply $M_2 = 75 \times r^{0.1t}$                                                                                              | B1             |         | for positive value <i>r</i>                                                                                                                                                                |
|           | Obtain $75 \times 1.6^{0.1t}$                                                                                                              | B1             |         | •                                                                                                                                                                                          |
|           | Attempt to find $M_2$ in terms of e                                                                                                        | M1             |         |                                                                                                                                                                                            |
|           | Equate masses and attempt rearrangement                                                                                                    | M1             |         |                                                                                                                                                                                            |
|           | Obtain $e^{0.061t} = \frac{16}{3}$                                                                                                         | <b>A</b> 1     | 5       | or equiv of required form which might                                                                                                                                                      |
|           | •                                                                                                                                          |                |         | involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii                                                                                                       |
| <br>(iii) | 1 0 0                                                                                                                                      |                |         |                                                                                                                                                                                            |
|           | of any equation of form $e^{mt} = c_1$                                                                                                     | M1             |         | whether the conclusion of part ii or not                                                                                                                                                   |
|           | Obtain 27.4                                                                                                                                | A1             | 2<br>10 | or greater accuracy 27.4422; correct answer only earns both marks                                                                                                                          |

| 9 | (i)   | Use at least one identity correctly<br>Attempt use of relevant identities in             | B1 |    | angle-sum or angle-difference identity                                                                                                                                                                                                                                                                                                                                                           |
|---|-------|------------------------------------------------------------------------------------------|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       | single rational expression                                                               | M1 |    | not earned if identities used in expression where step equiv to $\frac{A+B+C}{D+E+F} = \frac{A}{D} + \frac{B}{E} + \frac{C}{F} \text{ or similar has}$ been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos\theta\cos\alpha - \sin\theta\sin\alpha + 3\cos\theta + \cos\theta\cos\alpha + \sin\theta\sin\alpha$ ) |
|   |       | Obtain $\frac{2\sin\theta\cos\alpha + 3\sin\theta}{2\cos\theta\cos\alpha + 3\cos\theta}$ | A1 |    | or equiv but with the other two terms from                                                                                                                                                                                                                                                                                                                                                       |
|   |       | Attempt factorisation of num'r and den'r                                                 | M1 |    | each of num'r and den'r absent                                                                                                                                                                                                                                                                                                                                                                   |
|   |       | Obtain $\frac{\sin \theta}{\cos \theta}$ and hence $\tan \theta$                         | A1 | 5  | AG; necessary detail needed                                                                                                                                                                                                                                                                                                                                                                      |
|   | (ii)  | State or imply form $k \tan 150^{\circ}$                                                 | M1 |    | obtained without any wrong method seen                                                                                                                                                                                                                                                                                                                                                           |
|   |       | State or imply $\frac{4}{3} \tan 150^{\circ}$                                            | A1 |    | or equiv such as $\frac{12\sin 150^{\circ}}{9\cos 150^{\circ}}$                                                                                                                                                                                                                                                                                                                                  |
|   |       | Obtain $-\frac{4}{9}\sqrt{3}$                                                            | A1 | 3  | or exact equiv (such as $-\frac{4}{3\sqrt{3}}$ ); correct                                                                                                                                                                                                                                                                                                                                        |
|   |       |                                                                                          |    |    | answer only earns 3/3                                                                                                                                                                                                                                                                                                                                                                            |
|   | (iii) | State or imply $\tan 6\theta = k$                                                        | B1 |    |                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       | State $\frac{1}{6} \tan^{-1} k$                                                          | B1 |    |                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       | Attempt second value of $\theta$                                                         | M1 |    | using $6\theta = \tan^{-1} k + \text{(multiple of 180)}$                                                                                                                                                                                                                                                                                                                                         |
|   |       | Obtain $\frac{1}{6} \tan^{-1} k + 30^{\circ}$                                            | A1 | 4  | and no other value                                                                                                                                                                                                                                                                                                                                                                               |
|   |       |                                                                                          |    | 12 |                                                                                                                                                                                                                                                                                                                                                                                                  |

| C | uestion | Answer                                                                                                                                  | Marks                 | Guidance                                                                                                                                                                                                                                                                                                                                                  |  |
|---|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 |         | State $2 \ln x$ Use both relevant logarithm properties correctly  Obtain $\ln 3$                                                        | B1<br>M1<br>A1<br>[3] | may be implied by immediate use of limits either or both may be implied, eg by $2 \ln \sqrt{6} = \ln 6$ or by $\ln 6 - \ln 2 = \ln 3$ AG; with at least one property shown explicitly                                                                                                                                                                     |  |
| 2 |         | State volume is $\int \frac{36\pi}{(2x+1)^4} dx$<br>Obtain integral of form $k(2x+1)^n$<br>Obtain $-6\pi(2x+1)^{-3}$ or $-6(2x+1)^{-3}$ | B1 M1 A1              | or equiv in terms of $x$ ; no need for limits;<br>condone absence of $dx$ ; condone absence of $\pi$ here if it appears later in solution (even as part of a wrong answer)<br>for any $n \le -1$ ; with or without $\pi$ ; or $ku^n$ following substitution; allow if $n = -5$ ; allow M1 if one slight slip occurs in $(2x + 1)$ or (unsimplified) equiv |  |
|   |         | Substitute correct limits and subtract $ \text{Obtain } \frac{52}{9}\pi $                                                               | M1 A1 [5]             | the correct way round for integral of form $k(2x+1)^{-3}$ ; allow if one slight slip occurs in $(2x+1)$ ; not earned if limit 0 leads to – 0 or similarly simplified exact equiv                                                                                                                                                                          |  |

|   | )uestio | on Answer                                      | Marks | Guidance                                                                                                                          |
|---|---------|------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|
|   |         |                                                |       |                                                                                                                                   |
| 3 |         | Attempt use of quotient rule                   | M1    | condone $u/v$ muddles but needs $(x+2)^2$ in                                                                                      |
|   |         |                                                |       | denominator; condone numerator back to front; or product rule to produce terms                                                    |
|   |         |                                                |       | involving $(x+2)^{-1}$ and $(x+2)^{-2}$                                                                                           |
|   |         | Obtain $\frac{2x(x+2)-(x^2+4)}{(x+2)^2}$       | A1    | or equiv; brackets may be implied by subsequent recovery                                                                          |
|   |         | Substitute 1 into attempt at first derivative  | M1    | also allow if sign slip leads to derivative cancelling to 1                                                                       |
|   |         | Obtain $\frac{1}{9}$                           | A1    |                                                                                                                                   |
|   |         | Use -9 as gradient of normal                   | A1ft  | following their value of first derivative                                                                                         |
|   |         | Attempt to find equation of normal             | M1    | not equation of tangent; needs use of negative reciprocal of their derivative value                                               |
|   |         | Obtain $27x + 3y - 32 = 0$                     | A1    | or equiv of requested form                                                                                                        |
|   |         |                                                | [7]   |                                                                                                                                   |
| 4 | (i)     | State $\tan \alpha = 2$                        | B1    | ignoring subsequent work to find angle                                                                                            |
|   |         | Use identity $\sec^2 \beta = 1 + \tan^2 \beta$ | B1    |                                                                                                                                   |
|   |         | Attempt solution of quad eqn for $\tan \beta$  | M1    | 3 term quad eqn; using reasonable attempt at factorisation to find value or use of quadratic formula (with no more than one slip) |
|   |         | Obtain $\tan \beta = 5$                        | A1    | ignoring subsequent work to find angle; value 5 must be obtained legitimately                                                     |
|   |         |                                                | [4]   |                                                                                                                                   |

|   | Questio | n | Answer                                                                                                                       | Marks           | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---|---------|---|------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4 | (ii)    |   | Substitute their values of $\tan \alpha$ and $\tan \beta$ in formula  Obtain $\frac{2+5}{1-2\times 5}$ Obtain $-\frac{7}{9}$ | M1 A1ft A1      | of form $\frac{\pm \tan \alpha \pm \tan \beta}{\pm 1 \pm \tan \alpha \tan \beta}$ following their values from part (i)  or correct simplified exact equiv including $\frac{7}{-9}$ ;  A0 if $\tan \beta = 5$ obtained incorrectly in part (i)  SC: use of calculator for $\tan(\tan^{-1} 2 + \tan^{-1} 5)$ to give $-\frac{7}{9}$ earns all 3 marks (but 0 out of 3 if answer is not exact); with either or both of 2 and 5 wrong, 2 out of 3 available for this approach if result is exact and correct given their two values |  |
| 5 | (i)     |   | State 26<br>State 4                                                                                                          | B1<br>B1<br>[2] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 5 | (ii)    |   | Sketch (more or less) correct curve  Refer to reflection in $y = x$ or symmetrical about $y = x$ or mirrored in $y = x$      | B1<br>B1<br>[2] | with approx correct curvatures and curve going through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y = x$ explicit reference needed, not just line $y = x$ shown on sketch                                                                                                                                                                                                                                                                                                      |  |

|   | uestion | Answer                                                                                                                                                                                                                                          | Marks           | Guidance                                                                                                                                                                     |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (iii)   | Attempt calculation $k(y+4y+2y+)$ Obtain $k(1+32+28+76+46+100+26)$ Use $k = \frac{1}{3} \times 2$ Obtain 206                                                                                                                                    | M1 A1 A1 A1 [4] | any constant k; with y-values from table and coefficients 1, 2 and 4 occurring at least once each; brackets may be implied by subsequent calculation or (unsimplified) equiv |
| 6 | (i)     | Obtain rational expression of form $\frac{f(y)}{y^3 + 2y}$ Obtain $\frac{3y^2 + 2}{y^3 + 2y}$                                                                                                                                                   | M1 A1 [2]       | where f(y) is not constant; ignore how expression is labelled                                                                                                                |
| 6 | (ii)    | Recognise that $\frac{dy}{dx} = 1 \div \frac{dx}{dy}$ for rational expression of form $\frac{f(y)}{y^3 + 2y}$<br>Obtain $\frac{y^3 + 2y}{3y^2 + 2} = 4$ or $\frac{3y^2 + 2}{y^3 + 2y} = \frac{1}{4}$<br>Confirm $y = \frac{12y^2 + 8}{y^2 + 2}$ | M1 A1ft A1      | following their rational expression from (i)  AG; following correct work and with at least one step between $\frac{y^3 + 2y}{3y^2 + 2} = 4$ or equiv and answer              |

| C | )uestic | n | Answer                                                                                       | Marks          | Guidance                                                                                                                                                                                                                                                    |
|---|---------|---|----------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (iii)   |   | Obtain correct first iterate 11.89                                                           | B1             | or greater accuracy; having started with 12; accept if 12 used in part (ii) to produce next                                                                                                                                                                 |
|   |         |   | Attempt iteration process to produce at least 3 iterates in all                              | M1             | value and 11.89 used as starting value here implied by plausible sequence of values; having started anywhere; if formula clearly not based on equation from part (ii), award M0                                                                             |
|   |         |   | Obtain at least 2 more correct iterates Obtain 11.888 for <i>y</i> Obtain 7.441 for <i>x</i> | A1<br>A1<br>A1 | showing at least 3 decimal places answer needed to exactly 3 decimal places; answer needed to exactly 3 decimal places; award final A0 if not clear which is $x$ and which is $y$ [12 $\rightarrow$ 11.89041 $\rightarrow$ 11.88841 $\rightarrow$ 11.88837] |
|   |         |   |                                                                                              | [5]            |                                                                                                                                                                                                                                                             |

| C | Questic | n   | Answer                                                                                                                                                                                                                                                                                                                 | Marks                 | Guidance                                                                                                                                                                                                     |  |
|---|---------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7 | (i)     | (a) | State or imply $e^{-0.132t} = 0.25$<br>Attempt solution of eqn of form $e^{-0.132t} = k$<br>Obtain 10.5                                                                                                                                                                                                                | B1<br>M1<br>A1<br>[3] | or equiv such as $40e^{-0.132t} = 10$ using sound process; implied by correct ans; allow trial and improvement attempt or greater accuracy                                                                   |  |
| 7 | (i)     | (b) | Differentiate to obtain $ke^{-0.132t}$<br>Obtain $5.28e^{-0.132t}$ or $-5.28e^{-0.132t}$<br>Substitute 5 to obtain 2.73 or $-2.73$                                                                                                                                                                                     | M1 A1 A1 [3]          | where <i>k</i> is a constant not equal to 40 (allow even if process looks like integration) or (unsimplified) equiv accept 2.7 or –2.7 or greater accuracy; allow 2.73 or –2.73 whatever it is claimed to be |  |
| 7 | (ii)    |     | EITHER Attempt to solve $40e^{2\lambda} = 31.4$ or $40e^{-2\lambda} = 31.4$ Obtain or imply $40e^{-0.121t}$ Substitute 3 to obtain 27.8  OR Attempt calculation involving multiplication of power of $\frac{31.4}{40}$ Obtain $31.4 \times (\frac{31.4}{40})^{0.5}$ or $40 \times (\frac{31.4}{40})^{1.5}$ Obtain 27.8 | M1 A1 A1 [3] M1 A1 A1 | using sound process; method implied by correct formula for mass of <i>B</i> obtained or greater accuracy (–0.12103) or 0.5 ln 0.785 accept 28 or greater accuracy                                            |  |

| C | uestion | Answer                                                                                                                                                                                                                                                                                                          | Marks                 | Guidance                                                                                                                                              |  |
|---|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8 | (i)     | State $\cos 4\theta = 1 - 2\sin^2 2\theta$<br>State or clearly imply $\sin 2\theta = 2\sin \theta \cos \theta$<br>Obtain $1 - 8\sin^2 \theta \cos^2 \theta$                                                                                                                                                     | B1<br>B1<br>B1<br>[3] | possibly substituted in incorrect expression                                                                                                          |  |
| 8 | (ii)    | Produce expression involving $\cos \frac{4}{24}\pi$ as only trigonometrical ratio Obtain $\frac{1}{8} - \frac{1}{16}\sqrt{3}$                                                                                                                                                                                   | M1 A1 [2]             | or exact equiv (including, eg $\frac{1-\frac{1}{2}\sqrt{3}}{8}$ )                                                                                     |  |
| 8 | (iii)   | Use $2\cos^2 2\theta = 1 + \cos 4\theta$<br>Attempt to express in terms of $\cos 4\theta$<br>Obtain $\frac{2}{3} + \frac{4}{3}\cos 4\theta$<br>Substitute at least one of $-1$ and 1 for $\cos 4\theta$<br>in expression where $\cos 4\theta$ is only<br>trigonometrical ratio<br>Obtain $2$ and $-\frac{2}{3}$ | B1<br>M1<br>A1<br>M1  | or use $2\cos^2 2\theta = 2 - 8\sin^2 \theta \cos^2 \theta$<br>or unsimplified equiv<br>or at least one of $\theta = \frac{1}{4}\pi$ and $\theta = 0$ |  |

|   | uestion | Answer                                                                                                                                                                                                                                                                                                                 | Marks                          | Guidance                                                                                                                                                                                                                             |  |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9 | (i)     | Attempt differentiation to find <i>x</i> -coordinate of stationary point or attempt completion of square as far as $(x +)^2$                                                                                                                                                                                           | M1                             | or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1                                                                                                                       |  |
|   |         | Obtain $x = -2$ or $(x+2)^2$<br>State translation by 2 in negative x-direction<br>State translation by 4 in negative y-direction<br>State stretch parallel to y-axis, scale factor k                                                                                                                                   | A1<br>A1<br>A1<br>B1<br>[5]    | first two marks of part (i) are implied by correct answer to translation in <i>x</i> -direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning <i>y</i> and <i>k</i>     |  |
| 9 | (ii)    | State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$<br>$y > 4k, y \ge 4k, y > -4k, y \ge -4k$<br>State $y \ge -4k$                                                                                                                                                                                                     | B1<br>B1<br>[2]                | allow alternative notation such as $f(x) \ge -4k$<br>or range $\ge -4k$                                                                                                                                                              |  |
| 9 | (iii)   | Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$ Attempt solution of $k(x^2 + 4x) = 20$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$ Obtain $-2 \pm 2\sqrt{2}$ or $-2 \pm \sqrt{8}$ | *M1  A1  B1  M1  A1ft  A1  [6] | earned unless there is clear evidence of error in working  dep *M; for their value of <i>k</i> provided positive or (unsimplified) exact equivs; following their value of <i>k</i> dependent on previous A1 A1ft marks being awarded |  |

|   | Questi | on | Answer                                                                                   | Marks     | Guidance                                                                                                                            |                                                                                                                                                                                                 |
|---|--------|----|------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |        |    | Attempt process for finding critical values                                              | M1        | squaring both sides, 2 linear eqns, ineqs,                                                                                          | If using quadratic, need to go as far as factorising or substituting in formula for M1; if using two linear eqns or ineqs, signs of 2x and x must be same in one, different in the other for M1 |
|   |        |    | Obtain $\frac{4}{3}$                                                                     | A1        |                                                                                                                                     | 101 111                                                                                                                                                                                         |
|   |        |    | Obtain 6 Attempt process for inequality involving two critical values                    | A1<br>M1  | sketch, table,; implied by plausible soln                                                                                           |                                                                                                                                                                                                 |
|   |        |    | Obtain $x < \frac{4}{3}$ , $x > 6$                                                       | A1        | A0 for use of $\leq$ and/or $\geq$                                                                                                  |                                                                                                                                                                                                 |
|   |        |    |                                                                                          | [5]       |                                                                                                                                     |                                                                                                                                                                                                 |
| 2 | (i)    |    | Attempt use of at least one logarithm property correctly applied to $ln(\frac{ep^2}{a})$ | M1        | not including $\ln e = 1$ ; such as = $\ln ep^2 - \ln q$ for example                                                                |                                                                                                                                                                                                 |
|   |        |    | Obtain 261 legitimately with necessary detail seen                                       | A2        | AG; award A1 if nothing wrong but not quite enough detail or if there is one slip on way to 261                                     |                                                                                                                                                                                                 |
|   |        |    | <u>OR</u>                                                                                | [3]       |                                                                                                                                     |                                                                                                                                                                                                 |
|   |        |    | Express $\frac{ep^2}{q}$ in form $e^n$                                                   | M1        | with correct treatment of powers                                                                                                    |                                                                                                                                                                                                 |
|   |        |    | Obtain e <sup>261</sup> and hence 261                                                    | A2        | AG; award A1 if nothing wrong but not quite enough detail to be fully convincing                                                    |                                                                                                                                                                                                 |
| 2 | (ii)   |    | Introduce logarithms and bring power down                                                | M1        | relating $n \ln 5$ to a constant; if using base 5 or base 10, no                                                                    |                                                                                                                                                                                                 |
|   |        |    | Obtain $n \ln 5 > 580$                                                                   | A1        | powers must remain on right-hand side<br>or equiv (such as $n > 580\log_5 e$ or $n\log 5 > 580\log e$ );<br>allow eqn at this stage |                                                                                                                                                                                                 |
|   |        |    | State single integer 361                                                                 | A1<br>[3] | not $n > 360$ nor $n \ge 361$                                                                                                       |                                                                                                                                                                                                 |

|   | Questi | ion | Answer                                                  | Marks              | Guidance                                                                                                              |                                         |
|---|--------|-----|---------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3 | (i)    |     | Use $\sec \theta = \frac{1}{\cos \theta}$               | B1                 |                                                                                                                       |                                         |
|   |        |     | Attempt to express in terms of $\tan \theta$ only       | M1                 |                                                                                                                       |                                         |
|   |        |     | Obtain $\tan^2 \theta = 36$ and hence $\tan \theta = 6$ | A1                 | AG; necessary detail needed (but no need to justify exclusion of $\tan \theta = -6$ )                                 |                                         |
|   |        |     |                                                         | [3]                |                                                                                                                       |                                         |
| 3 | (ii)   | (a) | Substitute 6 in attempt at formula                      | M1                 | of form $\frac{\tan \theta \pm \tan 45^{\circ}}{1 \mp \tan \theta \tan 45^{\circ}}$ with different signs in numerator | any apparent use of angle 80.5 means M0 |
|   |        |     |                                                         |                    | and denominator                                                                                                       |                                         |
|   |        |     | Obtain $\frac{5}{7}$                                    | A1                 | or exact equiv                                                                                                        | answer only: 0/2                        |
|   |        |     |                                                         | [2]                |                                                                                                                       |                                         |
| 3 | (ii)   | (b) | Substitute 6 in attempt at formula                      | M1                 | of form $\frac{\tan \theta + \tan \theta}{1 \pm \tan \theta \tan \theta}$                                             | any apparent use of angle               |
|   |        |     |                                                         |                    | $\frac{1 \pm \tan \theta \tan \theta}{1 \pm \tan \theta}$                                                             | 80.5 means M0                           |
|   |        |     | Obtain $-\frac{12}{35}$                                 | A1                 | or exact equiv; allow $\frac{12}{-35}$                                                                                | answer only: 0/2                        |
|   |        |     |                                                         | [2]                |                                                                                                                       |                                         |
| 4 | (a)    |     | Obtain integral of form $k(6x+1)^{\frac{1}{2}}$         | *M1                | any constant k                                                                                                        |                                         |
|   |        |     | Obtain $6(6x+1)^{\frac{1}{2}}$                          | A1                 | or (unsimplified) equiv                                                                                               |                                         |
|   |        |     | Substitute both limits and subtract                     | M1                 | dep *M                                                                                                                |                                         |
|   |        |     | Obtain 30 – 6 and hence 24                              | A1<br>[ <b>4</b> ] | AG; necessary detail needed                                                                                           |                                         |
| 4 | (b)    |     | Attempt expansion of integrand                          | M1                 | to obtain (at least) 3 terms                                                                                          |                                         |
|   |        |     | Integrate $e^{kx}$ to obtain $\frac{1}{k}e^{kx}$        | M1                 | for any constant $k$ other than 1                                                                                     |                                         |
|   |        |     | Obtain $\frac{1}{2}e^{2x} + 4e^x + 4x$                  | A1                 | allow $+c$ at this stage                                                                                              |                                         |
|   |        |     | Obtain $\frac{1}{2}e^2 + 4e - \frac{1}{2}$              | A1                 | or equiv in terms of e simplified to three terms; no $+c$ now                                                         |                                         |
|   |        |     |                                                         | [4]                |                                                                                                                       |                                         |

|   | Questi | on   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks  | Guidance                                                                                                                                                            |
|---|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (i)    |      | Sketch (more or less) correct $y = 14 - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1     | assessed separately from other graph; must exist in all four quadrants; ignore any intercepts given                                                                 |
|   |        |      | Sketch (more or less) correct $y = k \ln x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1     | assessed separately from other graph; must exist in first and fourth quadrants; if clearly meets y-axis award B0; if clear maximum point in first quadrant award B0 |
|   |        |      | Indicate one root ('blob' on sketch or written reference to one intersection or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1 [3] | dependent on both curves being correct in first quadrant and there being no possibility, from their graphs, of further points of intersection elsewhere             |
| 5 | (ii)   | (a)  | Calculate values for at least 2 integers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1     |                                                                                                                                                                     |
|   |        | (**) | Obtain correct values for $x = 3$ and $x = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1     | $14-x^2-3\ln x$ : 1.7 -6.2                                                                                                                                          |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $14-x^2$ , $3\ln x$ : 5, 3.3 -2, 4.2                                                                                                                                |
|   |        |      | State 3 and 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1     | following correct calculations                                                                                                                                      |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]    |                                                                                                                                                                     |
| 5 | (ii)   | (b)  | Obtain correct first iterate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1     | having started with any positive value; B1 available if                                                                                                             |
|   |        |      | A second | 3.61   | 'iteration' never goes beyond a first iterate;                                                                                                                      |
|   |        |      | Attempt iteration process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1     | implied by plausible sequence of values                                                                                                                             |
|   |        |      | Obtain at least 3 correct iterates in all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1     | showing at least 2 d.p.                                                                                                                                             |
|   |        |      | Obtain 3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1     | answer required to exactly 2 d.p; not given for 3.24 as the                                                                                                         |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | final iterate in a sequence, i.e. needs an indication (perhaps just underlining) that value of $\alpha$ found                                                       |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | [3 $\rightarrow$ 3.27172 $\rightarrow$ 3.23173 $\rightarrow$ 3.23743 $\rightarrow$ 3.23661                                                                          |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                     |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $3.5 \rightarrow 3.20027 \rightarrow 3.24196 \rightarrow 3.23596 \rightarrow 3.23682$                                                                               |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | $4 \rightarrow 3.13706 \rightarrow 3.25118 \rightarrow 3.23465 \rightarrow 3.23701$                                                                                 |
|   |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [4]    |                                                                                                                                                                     |

|   | Questi | ion | Answer                                                                                                                             | Marks              | Guidance                                                                                                                                                                                |
|---|--------|-----|------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (i)    |     | Attempt use of chain rule                                                                                                          | *M1                | to obtain derivative of form $kh(3h^2+4)^n$ , any non-zero constants $k$ and $n$ condone retention of $-8$                                                                              |
|   |        |     | Obtain $9h(3h^2 + 4)^{\frac{1}{2}}$                                                                                                | A1                 | or (unsimplified) equiv; no – 8 here                                                                                                                                                    |
|   |        |     | Substitute 0.6 in attempt at first derivative                                                                                      | M1                 | dep *M; condone retention of – 8 here; implied by their value following wrong derivative if no working seen                                                                             |
|   |        |     | Obtain 12.17                                                                                                                       | A1<br>[ <b>4</b> ] | or greater accuracy                                                                                                                                                                     |
| 6 | (ii)   |     | State or imply that $\frac{dh}{dt} = -0.015$ or 0.015                                                                              | B1                 | implied by use in calculation with part (i) answer                                                                                                                                      |
|   |        |     | Carry out multiplication of $(\pm)0.015$ and answer from part (i)<br>Obtain 0.18 or $-0.18$ (whatever this value is claimed to be) | M1<br>A1           | or greater accuracy; condone absence or misuse of negative signs throughout; ignore units; allow for answer rounding to 0.18 following slight inaccuracy due to use of 12.18 or 12.2 or |
| 7 |        |     | Show composition of functions                                                                                                      | M1                 | the right way round; or equiv                                                                                                                                                           |
|   |        |     | Obtain $2\sqrt[3]{12-a} + 5 = 9$                                                                                                   | A1                 | or equiv                                                                                                                                                                                |
|   |        |     | Obtain $a = 4$ <u>EITHER</u>                                                                                                       | A1                 |                                                                                                                                                                                         |
|   |        |     | Attempt to find $g(x)$                                                                                                             | *M1                | obtaining $px^3 + q$ or $py^3 + q$ form                                                                                                                                                 |
|   |        |     | Obtain $(2x+5)^3 + 4 = 68$                                                                                                         | A1ft               | following their value of a                                                                                                                                                              |
|   |        |     | Attempt solution of equation                                                                                                       | M1                 | dep *M; earned at stage $2x + 5 =$ ; if expanding to produce cubic equation, earned with attempt at linear and quadratic factors                                                        |
|   |        |     | Obtain $-\frac{1}{2}$                                                                                                              | A1                 | and no others; dependent on correct work throughout                                                                                                                                     |
|   |        |     | 25                                                                                                                                 | [7]                |                                                                                                                                                                                         |
|   |        |     | State or imply $f(x) = g^{-1}(68)$                                                                                                 | B2                 |                                                                                                                                                                                         |
|   |        |     | Attempt solution of equation of form                                                                                               | M1                 |                                                                                                                                                                                         |
|   |        |     | $2x + 5 = \sqrt[3]{68 - 4}$                                                                                                        | 1,11               |                                                                                                                                                                                         |
|   |        |     | Obtain $-\frac{1}{2}$                                                                                                              | A1                 |                                                                                                                                                                                         |

## 4723 Mark Scheme June 2012

|   | Questi | on  | Answer                                                                                                                                                                                         | Marks        | Guidance                                                                                                                                                                  |                                                                                                                                          |
|---|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (i)    |     | State $R = 5$                                                                                                                                                                                  | B1           |                                                                                                                                                                           |                                                                                                                                          |
|   |        |     | Attempt to find value of $\alpha$                                                                                                                                                              | M1           | implied by correct value or its complement                                                                                                                                |                                                                                                                                          |
|   |        |     | Obtain 53.1                                                                                                                                                                                    | A1           | allow $\tan^{-1}\frac{4}{3}$                                                                                                                                              |                                                                                                                                          |
|   |        |     |                                                                                                                                                                                                | [3]          | 3                                                                                                                                                                         |                                                                                                                                          |
| 8 | (ii)   | (a) | Attempt to find at least one value of $\theta + \alpha$                                                                                                                                        | M1           | (should be -168.5 or -11.5 or 191.5 or)                                                                                                                                   |                                                                                                                                          |
|   |        |     | Obtain 1 correct value of $\theta$ (-64.7 or 138)                                                                                                                                              | A1           | allow ±0.1 in answer and greater accuracy                                                                                                                                 | note that 138 needs to be obtained legitimately from positive value of $\sin^{-1}(-\frac{1}{5})$ and not from $180-41.6$                 |
|   |        |     | Attempt correct process to find the second value                                                                                                                                               | M1           | involving a positive value of $\sin^{-1}(-\frac{1}{5})$ and subtraction of their $\alpha$                                                                                 |                                                                                                                                          |
|   |        |     | Obtain second value of $\theta$ (138 or –64.7)                                                                                                                                                 | A1 [4]       | allow $\pm 0.1$ in answer and greater accuracy; and no others between $-180$ and $180$                                                                                    | answers only: 0/4                                                                                                                        |
| 8 | (ii)   | (b) | Use $-1$ as minimum or 1 as maximum value of $sin(\theta + \alpha)$<br>Relate $-5k + c$ to $-37$ and $5k + c$ to $43$<br>Attempt solution of pair of linear eqns<br>Obtain $k = 8$ and $c = 3$ | *M1 A1 M1 A1 | as equations or inequalities dep *M; must be equations now SC: both $k = 8$ and $c = 3$ obtained with no working or from unconvincing working, award B2 (i.e. max $2/4$ ) | Note that alternative solutions may occur. If mathematically sound, all 4 marks are available; if work is not fully convincing, apply SC |

|   | Questio | n Answer                                                                                         | Marks    | Guidance                                                                                                                                                                  |                                                                             |
|---|---------|--------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 9 | (i)     | Attempt use of product rule to produce the form $\ln 2y + y \times \frac{a}{by}$                 | M1       |                                                                                                                                                                           | Note that product rule may be applied to expression in form $y(\ln 2y - 1)$ |
|   |         | Obtain correct $\ln 2y + y \times \frac{2}{2y}$                                                  | A1       | or equiv                                                                                                                                                                  |                                                                             |
|   |         | Obtain complete $\ln 2y + 1 - 1$ and confirm                                                     | A1 [3]   | AG; necessary detail needed                                                                                                                                               |                                                                             |
| 9 | (ii)    | Attempt to rearrange eqn to $x =$ or $x^2 =$                                                     | M1       | obtaining form $p \ln qy$                                                                                                                                                 |                                                                             |
|   |         | Obtain $x = \sqrt{\ln 2y}$ or $x^2 = \ln 2y$                                                     | A1       |                                                                                                                                                                           |                                                                             |
|   |         | State or imply volume is $\int \pi \ln 2y  dy$                                                   | A1ft     | following their $x =$ or $x^2 =$ ; condone absence of dy; condone presence of dx; no need for limits here; $\pi$ may be implied by its first appearance later in solution |                                                                             |
|   |         | Integrate using result of part (i)                                                               | M1       |                                                                                                                                                                           |                                                                             |
|   |         | Attempt to use limits $\frac{1}{2}$ and $\frac{1}{2}e^4$ correctly with expression involving $y$ | M1       |                                                                                                                                                                           |                                                                             |
|   |         | Obtain $\frac{1}{2}\pi(3e^4+1)$                                                                  | A1       | or equiv involving two terms; dependent on correct work throughout part (ii)                                                                                              |                                                                             |
|   | /···>   |                                                                                                  | [6]      |                                                                                                                                                                           |                                                                             |
| 9 | (iii)   | Subtract answer to part (ii) from $2\pi e^4$ Obtain $\frac{1}{2}\pi(e^4-1)$                      | M1<br>A1 | or its decimal equivalent or exact equiv involving two terms                                                                                                              |                                                                             |
|   |         |                                                                                                  | [2]      |                                                                                                                                                                           |                                                                             |

|   | Question | Answer                                                                                     | Marks  | Guidance                                                                                                                                                                                                 |
|---|----------|--------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (i)      | Either Attempt use of quotient rule                                                        | M1     | allow numerator wrong way round but needs minus sign in numerator and both terms in numerator involving $x$ ; for M1 condone minor errors such as absence of square in denominator, absence of brackets, |
|   |          | Obtain $\frac{3(2x+1)-6x}{(2x+1)^2}$ or equiv                                              | A1     | give A0 if necessary brackets absent unless subsequent calculation indicates their 'presence'                                                                                                            |
|   |          | Substitute 2 to obtain $\frac{3}{25}$ or 0.12                                              | A1     | or simplified equiv but A0 for final $\frac{3}{5^2}$                                                                                                                                                     |
|   |          |                                                                                            | [3]    |                                                                                                                                                                                                          |
|   |          | Or Attempt use of product rule for $3x(2x+1)^{-1}$                                         | M1     | allow sign error; condone no use of chain rule                                                                                                                                                           |
|   |          | Obtain $3(2x+1)^{-1} - 6x(2x+1)^{-2}$ or equiv                                             | A1     |                                                                                                                                                                                                          |
|   |          | Substitute 2 to obtain $\frac{3}{25}$ or 0.12                                              | A1     | or simplified equiv                                                                                                                                                                                      |
| 1 | (ii)     | Differentiate to obtain form $kx(4x^2 + 9)^n$                                              | M1     | any non-zero constants $k$ and $n$ (including 1 or $\frac{1}{2}$ for $n$ )                                                                                                                               |
|   |          | Obtain $4x(4x^2+9)^{-\frac{1}{2}}$                                                         | A1     | or (unsimplified) equiv                                                                                                                                                                                  |
|   |          | Substitute 2 to obtain $\frac{8}{5}$ or 1.6                                                | A1     | or simplified equiv but A0 for final $\frac{8}{\sqrt{25}}$                                                                                                                                               |
|   |          |                                                                                            | [3]    | <b>V</b>                                                                                                                                                                                                 |
| 2 | (i)      | Either Attempt to find exact value of sin A                                                | M1     | using right-angled triangle or identity or                                                                                                                                                               |
|   |          | Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv                        | A1     | final $\pm \frac{1}{2}\sqrt{5}$ is A0; correct answer only earns M1A1                                                                                                                                    |
|   |          |                                                                                            | [2]    |                                                                                                                                                                                                          |
|   |          | $\underline{Or}$ Attempt use of identity $1 + \cot^2 A = \csc^2 A$                         | M1     | using $\cot A = \frac{1}{2}$ ; allow sign error in attempt at identity                                                                                                                                   |
|   |          | Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv                        | A1     | final $\pm \frac{1}{2}\sqrt{5}$ is A0; correct answer only earns M1A1                                                                                                                                    |
| 2 | (ii)     | State or imply $\frac{2 + \tan B}{1 - 2 \tan B} = 3$                                       | B1     |                                                                                                                                                                                                          |
|   |          | Attempt solution of equation of form $\frac{\text{linear in } t}{\text{linear in } t} = 3$ | M1     | by sound process at least as far as $k \tan B = c$                                                                                                                                                       |
|   |          | Obtain $\tan B = \frac{1}{7}$                                                              | A1 [3] | answer must be exact; ignore subsequent attempt to find angle $B$                                                                                                                                        |

|   | Questio | n Answer                                                                                                                                             | Marks           | Guidance                                                                                                                                                    |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)     | Substitute $t = 3$ in $ 2t-1 $ and obtain value 5                                                                                                    | B1              | not awarded for final  5  nor for ±5                                                                                                                        |
|   |         | Substitute $t = -3$ in $ 2t - 1 $ and apply modulus correctly to any negative value to obtain a positive value                                       | M1              | with no modulus signs remaining                                                                                                                             |
|   |         | Obtain value 7 as final answer                                                                                                                       | A1              | not awarded for final  7  nor for ±7                                                                                                                        |
|   |         |                                                                                                                                                      |                 | NB: substitutions in $ 2t+1 $ will give 5 and 7 – this is 0/3, not MR; a further step to $5 < t < 7 - B1 M1 A0$ ; answers $\pm 5, \pm 7$ – this is B0 M0 A0 |
|   |         |                                                                                                                                                      | [3]             |                                                                                                                                                             |
| 3 | (b)     | Either Attempt solution of linear equation or inequality with signs of $x$ different Obtain critical value $-\sqrt{2}$                               | M1<br>A1        | or equiv (exact or decimal approximation)                                                                                                                   |
|   |         | Or 1 Attempt to square both sides<br>Obtain $x^2 - 2\sqrt{2}x + 2 > x^2 + 6\sqrt{2}x + 18$                                                           | M1<br>A1        | obtaining at least 3 terms on each side or equiv; or equation; condone > here                                                                               |
|   |         | Or 2 Attempt sketches of $y =  x - \sqrt{2} $ , $y =  x + 3\sqrt{2} $<br>Obtain $x = -\sqrt{2}$ at point of intersection                             | M1<br>A1        | or equiv                                                                                                                                                    |
|   |         | Conclude with inequality of one of the following types:                                                                                              | <u> </u>        |                                                                                                                                                             |
|   |         | $x < k\sqrt{2}$ , $x > k\sqrt{2}$ , $x < \frac{k}{\sqrt{2}}$ , $x > \frac{k}{\sqrt{2}}$<br>Obtain $x < -\sqrt{2}$ or $-\sqrt{2} > x$ as final answer | M1<br>A1<br>[4] | any integer $k$ final answer $x < -\frac{2}{\sqrt{2}}$ (or similar unsimplified version) is A0                                                              |

| Q | uestion | Answer                                                                               | Marks  | Guidance                                                                                                                                                           |
|---|---------|--------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (i)     | Attempt process involving logarithm to solve $e^{0.021t} = 2$                        | M1     | with t the only variable; at least as far as $0.021t = \ln 2$ ; must be= 2                                                                                         |
|   |         | Obtain 33                                                                            | A1     | or greater accuracy; ignore absence of, or wrong, units; final answer                                                                                              |
|   |         |                                                                                      |        | $\frac{\ln 2}{0.021}$ is A0                                                                                                                                        |
|   |         | State (or calculate separately to obtain) 99                                         | B1√    | following previous answer; no need to include units                                                                                                                |
| 4 | (ii)    | D100 1 1 1 1 0021t                                                                   | [3]    | 1 1 270                                                                                                                                                            |
| 4 | (11)    | Differentiate to obtain $ke^{0.021t}$                                                | M1     | where $k$ is any constant not equal to 250                                                                                                                         |
|   |         | Obtain $250 \times 0.021 \mathrm{e}^{0.021t}$                                        | A1     | or simplified equiv 5.25e <sup>0.021t</sup>                                                                                                                        |
|   |         | Substitute to obtain 8.4 or $\frac{42}{5}$                                           | A1     | or value rounding to 8.4 with no obvious error                                                                                                                     |
|   | (*)     |                                                                                      | [3]    |                                                                                                                                                                    |
| 5 | (i)     | Integrate to obtain form $k(3x+1)^{\frac{1}{2}}$                                     | *M1    | any non-zero constant k                                                                                                                                            |
|   |         | Obtain $4(3x+1)^{\frac{1}{2}}$                                                       | A1     | or (unsimplified) equiv; or $4u^{\frac{1}{2}}$ following substitution                                                                                              |
|   |         | Apply the limits and subtract the right way round                                    | M1     | dep *M                                                                                                                                                             |
|   |         |                                                                                      |        | •                                                                                                                                                                  |
|   |         | Obtain $4\sqrt{28} - 4\sqrt{7}$ and show at least one intermediate                   | A1     | AG; necessary detail required; decimal verification is A0;                                                                                                         |
|   |         | step in confirming $4\sqrt{7}$                                                       |        | $\left[ \dots \right]_{2}^{9} = 4\sqrt{28} - 4\sqrt{7} = 4\sqrt{7} \text{ is A0};  \left[ \dots \right]_{2}^{9} = 8\sqrt{7} - 4\sqrt{7} = 4\sqrt{7} \text{ is A0}$ |
|   |         |                                                                                      | [4]    |                                                                                                                                                                    |
| 5 | (ii)    | State or imply volume is $\int \pi \left(\frac{6}{\sqrt{3x+1}}\right)^2 dx$ or equiv | B1     | merely stating $\int \pi y^2 dx$ not enough; condone absence of dx; no need                                                                                        |
|   |         | Your I                                                                               |        | for limits yet; $\pi$ may be implied by its later appearance                                                                                                       |
|   |         | Integrate to obtain $k \ln(3x+1)$                                                    | M1     | any non-zero constant with or without $\pi$                                                                                                                        |
|   |         | Obtain $12\pi \ln(3x+1)$ or $12\ln(3x+1)$                                            | A1     | or unsimplified equiv                                                                                                                                              |
|   |         | Substitute limits correct way round and show each                                    | M1     | allowing correct applications to incorrect result of integration providing                                                                                         |
|   |         | logarithm property correctly applied                                                 |        | natural logarithm involved; evidence of $\ln 28 - \ln 7 = \frac{\ln 28}{\ln 7}$ error means                                                                        |
|   |         |                                                                                      | A 1    | M0                                                                                                                                                                 |
|   |         | Obtain $24\pi \ln 2$                                                                 | A1 [5] | no need for explicit statement of value of $k$                                                                                                                     |
|   |         |                                                                                      | [၁]    |                                                                                                                                                                    |

|   | Question | Answer                                                                                                              | Marks     | Guidance                                                                                                                                                                                    |
|---|----------|---------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (i)      | Sketch more or less correct $y = \ln x$                                                                             | B1        | existing for positive and negative y; no need to indicate (1, 0); ignore any scales given on axes; condone graph touching y-axis but B0 if it crosses y-axis                                |
|   |          | Sketch more or less correct $y = 8 - 2x^2$                                                                          | B1        | (roughly) symmetrical about y-axis; extending, if minimally, into quadrants for which $y < 0$ ; no need to indicate $(\pm 2, 0)$ , $(0, 8)$ ; assess each curve separately                  |
|   |          | Indicate intersection by some mark on diagram (just a 'blob' sufficient) of by statement in words away from diagram | B1        | needs each curve to be (more or less) correct in the first quadrant and on curves being related to each other correctly there                                                               |
|   |          |                                                                                                                     | [3]       |                                                                                                                                                                                             |
| 6 | (ii)     | Refer, in some way, to graphs crossing x-axis at $x = 1$ and $x = 2$ and that intersection is between these values  | B1        | AG; the values 1 and 2 may be assumed from part (i) if clearly marked there; dependent on curves being (more or less) correct in first quadrant; carrying out the sign-change routine is B0 |
|   |          |                                                                                                                     | [1]       | quadrant, earlying out the sign change routine is 20                                                                                                                                        |
| 6 | (iii)    | Obtain correct first iterate                                                                                        | B1        | to at least 3 dp (except in the case of starting value 1 leading to 2)                                                                                                                      |
|   |          | Show correct iterative process                                                                                      | M1        | involving at least 3 iterates in all; may be implied by plausible converging values                                                                                                         |
|   |          | Obtain at least 3 correct iterates                                                                                  | A1        | allowing recovery after error; iterates given to at least 3 dp; values may be rounded or truncated                                                                                          |
|   |          | Conclude with 1.917                                                                                                 | A1        | answer required to exactly 3 dp; answer only with no evidence of process is 0/4                                                                                                             |
|   |          |                                                                                                                     | [4]       |                                                                                                                                                                                             |
|   |          | $1 \rightarrow 2 \rightarrow 1.91139$                                                                               | → 1.91′   | $731 \rightarrow 1.91690 \rightarrow 1.91693$                                                                                                                                               |
|   |          | 1.5 → 1.94865                                                                                                       | → 1.91479 | $9 \rightarrow 1.91707 \rightarrow 1.91692$                                                                                                                                                 |
|   |          | 2 → 1.91139                                                                                                         | → 1.91731 | $\dots \rightarrow 1.91690 \rightarrow 1.91693$                                                                                                                                             |
| 6 | (iv)     | Obtain 3.92 or greater accuracy                                                                                     | B1√       | following their answer to part (iii)                                                                                                                                                        |
|   |          | Attempt 4×ln(part (iii) answer)                                                                                     | M1        |                                                                                                                                                                                             |
|   |          | Obtain y-coordinate 2.60                                                                                            | A1 [3]    | value required to exactly 2 dp (so A0 for 2.6 and 2.603)                                                                                                                                    |

|   | Question | Answer                                                                                             | Marks | Guidance                                                                                                                             |
|---|----------|----------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| 7 | (i)      | Attempt use of product rule                                                                        | M1    | to produce expression of form                                                                                                        |
|   |          |                                                                                                    |       | (something non-zero) $ln(2y+3) + \frac{linear in y}{linear in y}$ ; ignore what they call                                            |
|   |          |                                                                                                    |       | their derivative                                                                                                                     |
|   |          | Obtain $ln(2y+3)$                                                                                  | A1    | with brackets included                                                                                                               |
|   |          | Obtain + $\frac{2(y+4)}{2y+3}$                                                                     | A1    | with brackets included as necessary                                                                                                  |
|   |          |                                                                                                    | [3]   |                                                                                                                                      |
| 7 | (ii)     | Substitute $y = 0$ into attempt from part (i) or into their                                        |       |                                                                                                                                      |
|   |          | attempt (however poor) at its reciprocal                                                           | M1    |                                                                                                                                      |
|   |          | Obtain 0.27 for gradient at A                                                                      | A1    | or greater accuracy 0.26558; beware of 'correct' answer coming from incorrect version $ln(2y+3) + \frac{8}{3}$ of answer in part (i) |
|   |          | Attempt to find value of y for which $x = 0$                                                       | M1    | allowing process leading only to $y = -4$                                                                                            |
|   |          | Substitute $y = -1$ into attempt from part (i) or into their                                       | M1    |                                                                                                                                      |
|   |          | attempt (however poor) at its reciprocal Obtain 0.17 or $\frac{1}{6}$ for gradient at <i>B</i>     | A 1   | 0.16666                                                                                                                              |
|   |          | Obtain 0.17 of $\frac{1}{6}$ for gradient at B                                                     | A1    | or greater accuracy 0.16666; value following from correct working                                                                    |
| 8 | (i)      | Attempt completion of square at least as far as $(x+2a)^2$                                         | [5]   |                                                                                                                                      |
|   |          | or differentiation to find stationary point at least as far as linear equation involving two terms | *M1   | or equiv but a must be present                                                                                                       |
|   |          | Obtain $(x+2a)^2 - 3a^2$ or $(-2a, -3a^2)$                                                         | A1    |                                                                                                                                      |
|   |          | Attempt inequality involving appropriate y-value                                                   | M1    | dep *M; allow $<$ , $>$ or $\le$ here; allow use of $x$ ; or unsimplified equiv                                                      |
|   |          | State $y \ge -3a^2$ or $f(x) \ge -3a^2$                                                            | A1    | now with $\geq$ ; here $x \geq -3a^2$ is A0                                                                                          |
|   |          |                                                                                                    | [4]   |                                                                                                                                      |

|   | Question | Answer                                                                | Marks | Guidance                                                                                                     |
|---|----------|-----------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 8 | (ii)     | Attempt composition of f and g the right way round                    | *M1   | algebraic or (part) numerical; need to see $4x-2a$ replacing $x$ at least once                               |
|   |          | Obtain or imply $16x^2 - 3a^2$ or $144 - 3a^2$                        | A1    | or less simplified equiv but with at least the brackets expanded correctly                                   |
|   |          | Attempt to find $a$ from $fg(3) = 69$                                 | M1    | dep *M                                                                                                       |
|   |          | Obtain at least $a = 5$                                               | A1    |                                                                                                              |
|   |          | Attempt to solve $4x-10 = x$ or $\frac{1}{4}(x+10) = x$ or            | 3.61  |                                                                                                              |
|   |          | $4x - 10 = \frac{1}{4}(x + 10)$                                       | M1    | for their <i>a</i> ; must be linear equation in one variable; condone sign slip in finding inverse of g      |
|   |          | Obtain $\frac{10}{3}$                                                 | A1    | and no other answer                                                                                          |
|   |          |                                                                       | [6]   |                                                                                                              |
| 9 | (i)      | State $\cos\theta\cos 45 - \sin\theta\sin 45$                         | B1    | or equiv including use of decimal approximation for $\frac{1}{\sqrt{2}}$                                     |
|   |          | Use correct identity for $\sin 2\theta$ or $\cos 2\theta$             | B1    | must be used; not earned for just a separate statement                                                       |
|   |          | Attempt complete simplification of left-hand side                     | M1    | with relevant identities but allowing sign errors, and showing two terms involving $\sin \theta \cos \theta$ |
|   |          | Obtain $\sin^2 \theta$                                                | A1    | AG; necessary detail needed                                                                                  |
|   |          |                                                                       | [4]   |                                                                                                              |
| 9 | (ii)     | Use identity to produce equation of form $\sin \frac{1}{2}\theta = c$ | M1    | condoning single value of constant $c$ here (including values outside the                                    |
|   |          |                                                                       |       | range $-1$ to 1); M0 for $\sin \theta = c$ unless value(s) are subsequently doubled                          |
|   |          | Obtain 70.5 or 70.6                                                   | A1    | or greater accuracy 70.528                                                                                   |
|   |          | Obtain -70.5 or -70.6                                                 | A1√   | or greater accuracy -70.528; following first answer; and no other                                            |
|   |          |                                                                       |       | answer between –90 and 90;                                                                                   |
|   |          |                                                                       |       | answer(s) only: 0/3                                                                                          |
| 9 | (iii)    | 0                                                                     | [3]   |                                                                                                              |
| 9 | (III)    | State or imply $6\sin^2\frac{1}{3}\theta = k$                         | B1    |                                                                                                              |
|   |          | Attempt to relate $k$ to at least $6\sin^2 30^\circ$                  | M1    |                                                                                                              |
|   |          | Obtain $0 < k < \frac{3}{2}$                                          | A1    | condone use of $\leq$                                                                                        |
|   |          |                                                                       | [3]   |                                                                                                              |

| ( | Question | Answer                                                                                            | Marks              | Guidance                                                                                                                                                                      |
|---|----------|---------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (i)      | Obtain integral of form $k(4-3x)^8$                                                               | M1                 | any non-zero constant $k$ ; using substitution to obtain $ku^8$ earns M1                                                                                                      |
|   |          | Obtain $-\frac{1}{24}(4-3x)^8$                                                                    | A1                 | or unsimplified equiv; must be in terms of x                                                                                                                                  |
| 1 | (ii)     | Obtain integral of form $k \ln(4-3x)$                                                             | M1                 | any non-zero constant $k$ ; allow M1 if brackets missing; using substitution to obtain $k \ln u$ earns M1; $\log(4-3x)$ with base e not specified is M1A0                     |
|   |          | Obtain $-\frac{1}{3}\ln(4-3x)$                                                                    | A1                 | now with either brackets or modulus signs; must be in terms of $x$ ; note that $-\frac{1}{3}\ln(x-\frac{4}{3})$ and $-\frac{1}{3}\ln(\frac{4}{3}-x)$ are correct alternatives |
|   |          | Include $+ c$ or $+ k$ at least once                                                              | B1                 | anywhere in solution to question 1; this mark available even if no other marks earned                                                                                         |
|   |          |                                                                                                   | [5]                |                                                                                                                                                                               |
| 2 | (i)      | Use $2\cos^2 \alpha - 1$ or $\cos^2 \alpha - \sin^2 \alpha$ or $1 - 2\sin^2 \alpha$               | B1                 |                                                                                                                                                                               |
|   |          | Obtain equation in which $\sin^2 \alpha$ appears once                                             | M1                 | condoning sign slips or arithmetic slips; for solution which gives equation involving $\tan^2 \alpha$ , M1 is not earned until valid method for                               |
|   |          |                                                                                                   |                    | reaching $\sin \alpha$ is used; attempt involving $4(1-s^2) = s^2$ is M0                                                                                                      |
|   |          | Obtain $\pm \frac{2}{3}$                                                                          | A1                 | both values needed; $\pm 0.667$ is A0; $\pm \sqrt{\frac{4}{9}}$ is A0; ignore subsequent                                                                                      |
|   |          |                                                                                                   | [3]                | work to find angle(s)                                                                                                                                                         |
| 2 | (ii)     | Either Attempt use of identity                                                                    | M1                 | of form $\tan^2 \beta = \pm \sec^2 \beta \pm 1$                                                                                                                               |
|   |          | Obtain $2\sec^2 \beta - 9\sec \beta - 5 = 0$                                                      | A1                 | condone absence of $= 0$                                                                                                                                                      |
|   |          | Attempt solution of 3-term quadratic in $\sec \beta$ to obtain at least one value of $\sec \beta$ | M1                 | if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values                                |
|   |          | Obtain 5 with no errors in solution                                                               | A1                 | and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$                                                                                                  |
|   |          | Or Attempt to express equation in terms of $\cos \beta$                                           | [ <b>4</b> ]<br>M1 | using identities which are correct apart maybe for sign slips                                                                                                                 |
|   |          | Obtain $5\cos^2 \beta + 9\cos \beta - 2 = 0$                                                      | A1                 | condone absence of $= 0$                                                                                                                                                      |
|   |          | Attempt solution of 3-term quadratic and show                                                     | M1                 | if factorising, factors must be such that expansion gives their first and                                                                                                     |
|   |          | switch at least once to a secant value Obtain 5 with no errors in solution                        | A1 [4]             | third terms; if using formula, this must be correct for their values and, finally, no other value; no need to justify rejection of $-\frac{1}{2}$                             |

|   | Question | Answer                                                                                               | Marks | Guidance                                                                                                                                                                                                                                                                                        |
|---|----------|------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (i)      | Use $\alpha$ (possibly implicitly) to state that radius of 'base' is $\frac{1}{2}x$                  | *B1   | or to obtain equiv such as $2r = x$ or $\frac{r}{x} = \frac{1}{2}$ or $\frac{x}{r} = 2$                                                                                                                                                                                                         |
|   |          | Substitute into formula to obtain $\frac{1}{3}\pi(\frac{1}{2}x)^2x$ or                               | B1    | dep *B; AG; necessary detail needed                                                                                                                                                                                                                                                             |
|   |          | $\frac{1}{3}\pi\frac{1}{4}x^2x$ and obtain $\frac{1}{12}\pi x^3$                                     |       | Note: comparing formulae $\frac{1}{3}\pi r^2 h$ and $\frac{1}{12}\pi x^3$ to 'deduce' is B0B0                                                                                                                                                                                                   |
|   |          | 3 4 12                                                                                               | [2]   | ·                                                                                                                                                                                                                                                                                               |
| 3 | (ii)     | Differentiate to obtain $\frac{1}{4}\pi x^2$ or equiv                                                | B1    | whatever they call it                                                                                                                                                                                                                                                                           |
|   |          | Attempt division involving 14 and their value of derivative when $x = 8$                             | M1    | ie $14 \div \text{deriv}$ or $\text{deriv} \div 14$ with $x = 8$                                                                                                                                                                                                                                |
|   |          | Obtain 0.28                                                                                          | A1    | allow 0.279 but not greater accuracy                                                                                                                                                                                                                                                            |
|   |          |                                                                                                      |       | Alternatives:                                                                                                                                                                                                                                                                                   |
|   |          |                                                                                                      |       | 1. $14t = \frac{1}{12}\pi x^3$ Obtain $\frac{dt}{dx} = \frac{1}{56}\pi x^2$ B1 Sub 8 and invert M1 Ans A1                                                                                                                                                                                       |
|   |          |                                                                                                      |       | 2. $x^3 = \frac{168t}{\pi}$ Obtain $3x^2 \frac{dx}{dt} = \frac{168}{\pi}$ B1 Sub 8 M1 Ans A1                                                                                                                                                                                                    |
|   |          |                                                                                                      | [3]   | 1 No. 10 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                    |
| 4 |          | Differentiate first term to obtain form $k(4x-7)^{-\frac{1}{2}}$                                     | *M1   | any non-zero constant $k$ ; M0 if this differentiation is carried out in the midst of some incorrect involved expression                                                                                                                                                                        |
|   |          | Obtain $2(4x-7)^{-\frac{1}{2}}$                                                                      | A1    | or (unsimplified) equiv                                                                                                                                                                                                                                                                         |
|   |          | Attempt use of quotient rule or, after adjustment, product rule                                      | *M1   | for QR, allow numerator wrong way round but needs — sign in numerator; condone a single error such as absence of square in denominator, absence of brackets,; for PR, condone no use of chain rule M0 if this differentiation is carried out in the midst of some incorrect involved expression |
|   |          | Obtain $\frac{4(2x+1)-8x}{(2x+1)^2}$ or $4(2x+1)^{-1}-8x(2x+1)^{-2}$                                 | A1    | or (unsimplified) equivs; give A0 if brackets absent unless subsequent calculation indicates their 'presence'                                                                                                                                                                                   |
|   |          | Substitute 4 into expression for first derivative so that (initially at least) exactness is retained | M1    | dep *M *M                                                                                                                                                                                                                                                                                       |
|   |          | Obtain $\frac{58}{81}$                                                                               | A1    | answer must be exact                                                                                                                                                                                                                                                                            |
|   |          |                                                                                                      |       | Note: using $y = \sqrt{4x - 7} + \frac{4}{2x + 1}$ : do not apply MR                                                                                                                                                                                                                            |
|   |          |                                                                                                      | [6]   |                                                                                                                                                                                                                                                                                                 |

| Ç | Questic | n | Answer                                                                            |        | Guidance                                                                                                                                                                                                                               |
|---|---------|---|-----------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (i)     |   | Refer to translation and stretch                                                  | M1     | in either order; ignore details here; allow any equiv wording (such as move or shift for translation) to describe geometrical transformation but not statements such as add 3 to <i>x</i>                                              |
|   |         |   | Either State translation in negative <i>x</i> -direction by 3                     | A1     | or state translation by $\begin{pmatrix} -3\\0 \end{pmatrix}$ ; accept horizontal to indicate direction;                                                                                                                               |
|   |         |   |                                                                                   |        | term 'translate' or 'translation' needed for award of A1                                                                                                                                                                               |
|   |         |   | State stretch by factor 2 in y-direction                                          | A1     | or parallel to y-axis or vertically; term 'stretch' needed for award of A1; these two transformations can be given in either order SC: if M0 but details of one transformation correct, award B1 for 1/3 (in Either, Or 1, Or 2 cases) |
|   |         |   |                                                                                   | [3]    | (III <u>Extres</u> , <u>Gr 1</u> , <u>Gr 2</u> cases)                                                                                                                                                                                  |
|   |         |   | Or 1 State stretch by factor $\frac{1}{2}$ in x-direction                         | A1     | or parallel to x-axis; term 'stretch' needed for award of A1                                                                                                                                                                           |
|   |         |   | State translation in negative $x$ -direction by 3                                 | A1 [3] | or state translation by $\begin{pmatrix} -3\\0 \end{pmatrix}$ ; term 'translate' or 'translation' needed                                                                                                                               |
|   |         |   |                                                                                   |        | for award of A1; these two transformations must be in this order – if details correct for M1A1A1 but order wrong, award M1A1A0                                                                                                         |
|   |         |   | $\underline{\text{Or } 2}$ State translation in negative <i>x</i> -direction by 6 | A1     | or state translation by $\begin{pmatrix} -6 \\ 0 \end{pmatrix}$ ; term 'translate' or 'translation' needed                                                                                                                             |
|   |         |   |                                                                                   |        | for award of A1                                                                                                                                                                                                                        |
|   |         |   | State stretch by factor $\frac{1}{2}$ in x-direction                              | A1 [3] | or parallel to <i>x</i> -axis; term 'stretch' needed for award of A1; these two transformations must be in this order – if details correct for M1A1A1 but order wrong, award M1A1A0                                                    |
| 5 | (ii)    |   | Either Solve linear eqn/ineq to obtain critical                                   | B1     | Will fill but older wrong, award will fill                                                                                                                                                                                             |
|   | ()      |   | value –6                                                                          |        |                                                                                                                                                                                                                                        |
|   |         |   | Attempt solution of linear eqn/ineq where signs of x and 2x are different         | M1     |                                                                                                                                                                                                                                        |
|   |         |   | Obtain critical value –2                                                          | A1     |                                                                                                                                                                                                                                        |
|   |         |   | Attempt solution of inequality                                                    | M1     | using table, sketch,; implied by correct answer or answer of form                                                                                                                                                                      |
|   |         |   |                                                                                   |        | $a < x < b$ or of form $x < a, x > b$ (where $a < b$ ); allow $\leq$ here                                                                                                                                                              |
|   |         |   | Obtain $-6 < x < -2$                                                              | A1     | as final answer; must be $<$ not $\le$ ; allow " $x > -6$ and $x < -2$ "                                                                                                                                                               |
|   |         |   |                                                                                   | [5]    |                                                                                                                                                                                                                                        |

|   | uestion       | Answer                                                                           |                    | Guidance                                                                                                                                         |  |
|---|---------------|----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |               | Or Square both sides to obtain $x^2 > 4(x^2 + 6x + 9)$                           | B1                 | or equiv                                                                                                                                         |  |
|   |               | Attempt solution of 3-term quadratic eqn/ineq Obtain critical values –6 and –2   | M1<br>A1           | with same guidelines as in Q2(ii) for factorising and formula                                                                                    |  |
|   |               | Attempt solution of inequality                                                   | M1                 | using table, sketch,; implied by correct answer or answer of form $a < x < b$ or of form $x < a, x > b$ (where $a < b$ ); allow $\le$ here       |  |
|   |               | Obtain $-6 < x < -2$                                                             | A1 [5]             | as final answer; must be $<$ not $\le$ ; allow ' $x > -6$ and $x < -2$ '                                                                         |  |
| 6 | (i)           | Attempt evaluation involving y values                                            | M1                 | with coefficients 1, 4 and 2 each occurring at least once; allow for wrong <i>y</i> -values; solution must include sufficient evidence of method |  |
|   |               | Obtain $k(\ln 3 + 4\ln 7 + 2\ln 19 + 4\ln 39 + \ln 67)$                          | A1                 | any constant <i>k</i> ; or decimal equivs; correct use of brackets required unless subsequent working shows their 'presence'                     |  |
|   |               | Identify value of k as $\frac{2}{3}$                                             | A1                 | as factor for their complete expression                                                                                                          |  |
|   |               | Obtain 22.4                                                                      | A1<br>[ <b>4</b> ] | allow any value rounding to 22.4; answer only is 0/4                                                                                             |  |
| 6 | (ii)          | State $9 + 6x^2 + x^4 = (3 + x^2)^2$                                             | B1                 | or, if proceeding numerically, demonstrate in at least three cases that                                                                          |  |
|   |               | (0.11)                                                                           |                    | $\ln 9 = \ln 3^2$ , $\ln 49 = \ln 7^2$ , $\ln 361 = \ln 19^2$ ,                                                                                  |  |
|   |               | Show relevant property $\ln(3+x^2)^2 = 2\ln(3+x^2)$ and conclude with value $2A$ | B1                 | AG; necessary detail needed; if proceeding numerically, needs all five cases with relevant property                                              |  |
|   |               | 211                                                                              |                    | Note: using Simpson's rule again here is B0B0                                                                                                    |  |
|   | <b>(***</b> ) |                                                                                  | [2]                |                                                                                                                                                  |  |
| 6 | (iii)         | Recognise $\ln(3e + ex^2)$ as $1 + \ln(3 + x^2)$                                 | B1                 |                                                                                                                                                  |  |
|   |               | Indicate in some way that $\int_0^8 1 dx$ is 8 and conclude with value $A + 8$   | B1                 | AG; necessary detail needed Note: using Simpson's rule again here is B0B0                                                                        |  |
|   |               | value ATO                                                                        | [2]                |                                                                                                                                                  |  |
| 7 | (i)           | State $y > 3$ or $f(x) > 3$ or $f > 3$ or 'greater than 3'                       | B1                 | must be $>$ not $\ge$ ; allow $3 < y < \infty$                                                                                                   |  |
|   |               |                                                                                  | [1]                |                                                                                                                                                  |  |
|   |               |                                                                                  |                    |                                                                                                                                                  |  |

| Ç | Questio | n   | Answer                                                                          | Marks              | Guidance                                                                                                                                                                                         |
|---|---------|-----|---------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | (ii)    |     | Obtain expression or eqn involving $\ln(\frac{y-3}{4})$ or $\ln(\frac{x-3}{4})$ | M1                 | or equivs such as $\ln(\frac{4}{y-3})$ or $\ln(\frac{4}{x-3})$                                                                                                                                   |
|   |         |     | Obtain $\ln(\frac{4}{r-3})$ or $-\ln(\frac{x-3}{4})$                            | A1                 | or equiv                                                                                                                                                                                         |
|   |         |     | State domain is $x > 3$ or equiv                                                | B1FT               | following answer to part (i) (but with adjustment so that reference is to $x$ )                                                                                                                  |
|   |         |     | State range is all real numbers or equiv                                        | B1<br>[ <b>4</b> ] |                                                                                                                                                                                                  |
| 7 | (iii)   |     | Obtain correct first iterate                                                    | B1                 | showing at least 3 dp; B0 if initial value not 3 but then M1A1A1 available                                                                                                                       |
|   |         |     | Show correct iteration process                                                  | M1                 | showing at least 3 iterates in all; may be implied by plausible converging values; M1available if based on equation with just a slip in $x = f(x)$ but M0 if based on clearly different equation |
|   |         |     | Obtain at least 3 correct iterates                                              | A1                 | allowing recovery after error; iterates to only 3 dp acceptable; values may be rounded or truncated                                                                                              |
|   |         |     | Obtain (3.168, 3.168)                                                           | A1                 | each coordinate required to exactly 3 dp; award A0 if fewer than 4 iterates shown; part (iii) consisting of answer only gets 0 out of 4                                                          |
|   |         |     | $[3 \rightarrow 3.199148 \rightarrow 3.1631]$                                   | 87 →               | $3.169162 \rightarrow 3.168155 \rightarrow 3.168324$                                                                                                                                             |
|   |         |     |                                                                                 | [4]                |                                                                                                                                                                                                  |
| 7 | (iv)    |     | State <i>P</i> is point where the curves meet                                   | B1<br>[ <b>1</b> ] | or equiv                                                                                                                                                                                         |
| 8 | (i)     |     | Obtain $R = \sqrt{20}$ or $R = 4.47$                                            | B1                 |                                                                                                                                                                                                  |
|   |         |     | Attempt to find value of $\alpha$                                               | M1                 | implied by correct value or its complement; allow $\sin/\cos$ muddles; allow use of radians for M1; condone use of $\cos \alpha = 4$ , $\sin \alpha = 2$ here                                    |
|   |         |     | Obtain 26.6                                                                     | A1<br>[3]          | but not for A1 or greater accuracy 26.565; with no wrong working seen                                                                                                                            |
| 8 | (ii)    | (a) | Show correct process for finding one answer                                     | M1                 | allowing for case where the answer is negative                                                                                                                                                   |
|   |         |     | Obtain 21.3                                                                     | A1FT               | or greater accuracy 21.3045; or anything rounding to 21.3 with no obvious error; following a wrong value of $\alpha$ but not wrong $R$                                                           |
|   |         |     | Show correct process for finding second answer                                  | M1                 | ie attempting fourth quadrant value minus $\alpha$ value                                                                                                                                         |
|   |         |     | Obtain 286 or 285.6                                                             | A1FT               | or greater accuracy 285.5653; or anything rounding to 286 with no obvious error; following a wrong value of $\alpha$ but not wrong $R$ ; and no others between $0^{\circ}$ and $360^{\circ}$     |
|   |         |     |                                                                                 | [4]                |                                                                                                                                                                                                  |

|   | )uestic | on .       | Answer                                                                                         | Marks                | Guidance                                                                                                                              |
|---|---------|------------|------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (ii)    | <b>(b)</b> | State greatest value is 25                                                                     | B1                   | allow if $\alpha$ incorrect                                                                                                           |
|   |         |            | Obtain value 63.4 clearly associated with correct greatest value                               | B1FT                 | or greater accuracy 63.4349; following a wrong value of $\alpha$                                                                      |
|   |         |            | State least value is 5                                                                         | B1                   | allow if $\alpha$ incorrect                                                                                                           |
|   |         |            | Attempt to find $\theta$ from $\cos(\theta + \text{their }\alpha) = -1$                        | M1                   | and clearly associated with correct least value                                                                                       |
|   |         |            | Obtain 153 or 153.4                                                                            | A1FT<br>[ <b>5</b> ] | or greater accuracy 153.4349; following a wrong value of $\alpha$                                                                     |
| 9 | (i)     |            | Differentiate to obtain $2e^{2x} - 18$                                                         | B1                   |                                                                                                                                       |
|   |         |            | Equate first derivative to zero and use legitimate method to reach equation without e involved | M1                   |                                                                                                                                       |
|   |         |            | Confirm $x = \ln 3$                                                                            | A1                   | AG; necessary detail needed (in particular, for solutions concluding $x = \frac{1}{2} \ln 9 = \ln 3$ or equiv award A0)               |
|   |         |            |                                                                                                | [3]                  |                                                                                                                                       |
| 9 | (ii)    |            | Attempt integration                                                                            | *M1                  | confirmed by at least one correct term                                                                                                |
|   |         |            | Obtain $\frac{1}{2}e^{2x} - 9x^2 + 15x$                                                        | A1                   | or equiv                                                                                                                              |
|   |         |            | Apply limits 0 and ln 3 to obtain exact unsimplified expression                                | M1                   | dep *M                                                                                                                                |
|   |         |            | Obtain $4 - 9(\ln 3)^2 + 15 \ln 3$                                                             | A1                   | or exact (maybe unsimplified) equiv perhaps still involving e                                                                         |
|   |         |            | Attempt area of trapezium or equiv, retaining exactness                                        | M1                   | using $\frac{1}{2}\ln 3 \times (y_1 + y_2)$ where $y_1$ is 15 or 16 and $y_2$ is attempt at y-                                        |
|   |         |            | throughout                                                                                     |                      | coordinate of $Q$ ; if using alternative approach involving rectangle and triangle, complete attempt needs to be seen for M1; another |
|   |         |            |                                                                                                |                      | alternative approach involves equation of $PQ$ ( $y = \frac{8-18\ln 3}{\ln 3}x + 16$ ) with                                           |
|   |         |            |                                                                                                |                      | integration: M1 for attempting equation and integration, A1 for correct answer                                                        |
|   |         |            | Obtain $\frac{1}{2} \ln 3 \times (16 + 24 - 18 \ln 3)$                                         | A1                   | or equiv perhaps still including e                                                                                                    |
|   |         |            | Subtract areas the right way round, retaining exactness                                        | M1                   | dep on award of all three M marks                                                                                                     |
|   |         |            | Obtain $5 \ln 3 - 4$                                                                           | A1                   | or similarly simplified exact equiv                                                                                                   |
|   |         |            |                                                                                                | [8]                  |                                                                                                                                       |

| Question | Answer                                                                                                                                                                               | Marks          | G                                                                                                                                                                                     | uidance                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1        | Attempt use of product rule to find first derivative                                                                                                                                 | M1             | producing form $\pm$ where one term involves $\ln x$ and the other does not                                                                                                           |                                                                                          |
|          | Obtain $8x \ln x + 4x$                                                                                                                                                               | A1             | or unsimplified equiv                                                                                                                                                                 |                                                                                          |
|          | Attempt use of correct product rule to find second derivative Obtain $8 \ln x + 12$ Obtain 28                                                                                        | M1<br>A1<br>A1 | with one term involving $\ln x$ or unsimplified equiv                                                                                                                                 |                                                                                          |
|          |                                                                                                                                                                                      | [5]            |                                                                                                                                                                                       |                                                                                          |
| 2        | State or imply $\csc q = 1$ , $\sin q$<br>Attempt to express equation in terms of $\sin q$ only                                                                                      | B1<br>M1       | allow $\csc = 1$ , $\sin \theta$<br>using identity of form $\pm 1 \pm 2 \sin^2 q$ for $\cos 2q$                                                                                       |                                                                                          |
|          | Obtain $10\sin^2 q + 2\sin q - 5 = 0$                                                                                                                                                | A1             | or unsimplified equiv involving $\sin q$ only but with no $\sin q$ remaining in denominator                                                                                           |                                                                                          |
|          | Attempt use of formula to find $\sin q$ from 3-term quadratic equation involving $\sin q$ (using formula or completing square even if their equation can be solved by factorisation) | M1             | use implied by at least one correct value of $\sin q$ or $q$ ; if correct quadratic formula quoted, condone one sign error for M1; if formula not first quoted, any error leads to M0 | if completion of square used to solve equation, this must be correct for M1 to be earned |
|          | Obtain 37.9°                                                                                                                                                                         | A1             | or greater accuracy 37.8896                                                                                                                                                           | no working and answers only (max 2/6):                                                   |
|          | Obtain 142°                                                                                                                                                                          | A1             | or greater accuracy 142.1103.; and no others between 0 and 180; ignore any answers, right or wrong, outside 0 - 180                                                                   | 37.9 (or greater accuracy) B1 142 (or greater accuracy) and no others B1                 |
|          |                                                                                                                                                                                      | [6]            |                                                                                                                                                                                       |                                                                                          |

|   | Questi | on | Answer                                                                               | Marks    | G                                                                                                                                        | uidance                                                                                                                                                                                                              |
|---|--------|----|--------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (i)    |    | Attempt calculation $k(y+4y+2y+)$                                                    | M1       | any constant k; using y values with coefficients 1, 2, 4 each occurring at least once; brackets may be implied by subsequent calculation | allow M1 for attempt using $y$ values based on wrong $x$ values such as 0, 1, 2, 3, 4; attempt based on $k(y_0 + y_4) + 4y_1 + 2y_2 + 4y_3$ is M0 unless subsequent calculation shows missing brackets are 'present' |
|   |        |    | Obtain $k(e^0 + 4e^{\sqrt{0.5}} + 2e + 4e^{\sqrt{1.5}} + e^{\sqrt{2}})$              | A1       | or equiv perhaps involving decimal values 1, 2.02811.,2.71828., 3.40329.,4.11325                                                         | •                                                                                                                                                                                                                    |
|   |        |    | Use $k = \frac{1}{3}' \frac{1}{2}$                                                   | A1       |                                                                                                                                          |                                                                                                                                                                                                                      |
|   |        |    | Obtain 5.38                                                                          | A1       | allow 5.379 but not, in final answer, greater 'accuracy'; answer 5.38+c is final A0                                                      | answer only: 0/4                                                                                                                                                                                                     |
|   |        |    |                                                                                      | [4]      |                                                                                                                                          |                                                                                                                                                                                                                      |
| 3 | (ii)   |    | Attempt calculation of form $10'$ (answer to part i) + $k$                           | M1       | implied by correct answer only or by answer following correctly from their incorrect part (i); any non-zero constant <i>k</i>            | allow attempt involving second use of<br>Simpson's rule: M1 for complete correct<br>expression, A1 for answer                                                                                                        |
|   |        |    | Obtain 55.8 or greater accuracy based on their part (i) –more than 3 s.f. acceptable | A1ft [2] | following their answer to part (i) but A0 for $55.8+c$                                                                                   | answer only 54.8 with no working earns M1A0 (as does 10(their ans) + 1); otherwise incorrect answer with no working earns 0/2                                                                                        |
| 4 | (i)    |    | Either: State $2x^3 + 4 = -50$                                                       | B1       |                                                                                                                                          |                                                                                                                                                                                                                      |
|   |        |    | State - 3 and no other                                                               | B1       |                                                                                                                                          |                                                                                                                                                                                                                      |
|   |        |    | Or: Obtain $\sqrt[3]{\frac{1}{2}(x-4)}$ for inverse of f                             | B1       | or equiv; using any letter                                                                                                               |                                                                                                                                                                                                                      |
|   |        |    | State - 3 and no other                                                               | B1 [2]   |                                                                                                                                          |                                                                                                                                                                                                                      |
| 4 | (ii)   |    | Show composition of functions the right way round                                    | M1       |                                                                                                                                          |                                                                                                                                                                                                                      |
|   |        |    | Obtain 2 <i>x</i> - 16                                                               | A1       | AG; necessary detail needed                                                                                                              | first step $2(x - 10) + 4$ acceptable but then two more steps needed                                                                                                                                                 |
|   |        |    |                                                                                      | [2]      |                                                                                                                                          |                                                                                                                                                                                                                      |

|   | Questio    | on Answer                                                                       | Marks | G                                                                                          | uidance                                                         |
|---|------------|---------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 4 | (iii)      | Obtain $\sqrt[3]{2x^3 - 6}$ or $(2x^3 - 6)^{\frac{1}{3}}$ for gf(x)             | B1    | or unsimplified equiv                                                                      |                                                                 |
|   |            | Apply chain rule to function which is cube root of a non-linear expression      | M1    | condone incorrect constant; otherwise use of chain rule for their function must be correct | may use $u = 2x^3 - 6$ ; M1 earned for expression involving $u$ |
|   |            | Obtain $2x^2(2x^3 - 6)^{-\frac{2}{3}}$                                          | A1    | or similarly simplified equiv; do not accept final answer with $\frac{6}{3}$ unsimplified  | in terms of $x$                                                 |
|   |            |                                                                                 | [3]   |                                                                                            |                                                                 |
| 5 | (a)        | Differentiate to produce $ke^{-0.33t}$                                          | M1    | where constant $k$ is different from 58                                                    | method must involve differentiation                             |
|   |            | Obtain - $19.14e^{-0.33t}$ or $19.14e^{-0.33t}$                                 | A1    | or unsimplified equiv                                                                      |                                                                 |
|   |            | Obtain - 5.1 or 5.1                                                             | A1    | whatever they claim value represents; accept 5.11 but not greater accuracy                 |                                                                 |
|   |            |                                                                                 | [3]   |                                                                                            |                                                                 |
| 5 | <b>(b)</b> | Either: State or imply formula $42e^{kt}$ or $42a^t$                            | B1    | $42e^{-kt}$ , $42e^{-kx}$ , etc. also acceptable                                           |                                                                 |
|   |            | Attempt to find <i>k</i> from $42e^{6k} = 51.8$ or <i>a</i> from $42a^6 = 51.8$ | M1    | using sound process involving logarithms at least as far as $6k =$ or $a =$                |                                                                 |
|   |            | Obtain $k = 0.035$ or $a = 1.0356$                                              | A1    | or greater accuracy 0.03495or exact equiv $\frac{1}{6} \ln \frac{37}{30}$                  |                                                                 |
|   |            | Substitute 24 to obtain value between 97.1 and 97.3 inclusive                   | A1    | allow greater accuracy than 3 s.f.                                                         |                                                                 |
|   |            | <u>Or</u> :                                                                     |       |                                                                                            |                                                                 |
|   |            | Use ratio $\frac{51.8}{42}$ in calculation                                      | B1    |                                                                                            |                                                                 |
|   |            | Attempt calculation of form $42 r^n$                                            | M1    |                                                                                            |                                                                 |
|   |            | Obtain 42' $(\frac{51.8}{42})^4$ or 51.8' $(\frac{51.8}{42})^3$                 | A1    |                                                                                            |                                                                 |
|   |            | Obtain value between 97.1 and 97.3 inclusive                                    | A1    | allow greater accuracy than 3 s.f.                                                         |                                                                 |
|   |            |                                                                                 | [4]   |                                                                                            |                                                                 |

|   | Questi | ion        | Answer                                                                                                                    | Marks  |                                                                                                                                                                                    | Guidance                                                                   |
|---|--------|------------|---------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 6 | (i)    |            | Draw inverted parabola roughly symmetrical about the <i>y</i> -axis and with maximum point more or less on <i>y</i> -axis | M1     | drawing enough of the parabola that two intersections occur, ignoring their locations at this stage                                                                                |                                                                            |
|   |        |            | State $y = 9 - x^2$ and indicate two intersections by marks on diagram or written reference to two intersections          | A1 [2] | now needs second curve drawn so that right-hand intersection occurs in first quadrant                                                                                              |                                                                            |
| 6 | (ii)   | (a)        | Calculate values of quartic expression for 2.1 and 2.2                                                                    | M1     | if no explicit working seen, M1 is implied by at least one correct value; but if no explicit working seen and both values wrong, award M0                                          |                                                                            |
|   |        |            | Obtain - 1.9 and 1.6and draw attention to sign change or clear equiv                                                      | A1 [2] | -                                                                                                                                                                                  |                                                                            |
| 6 | (ii)   | <b>(b)</b> | Obtain correct first iterate                                                                                              | B1     | starting anywhere between –1 and 9 and showing at least 3 d.p.                                                                                                                     |                                                                            |
|   |        |            | Carry out process to produce at least three iterates in all                                                               | M1     | implied by plausible sequence of values; allow recovery after error                                                                                                                | 2.1® 2.15056® 2.15531® 2.15575® 2.15579<br>2.15® 2.15526® 2.15574® 2.15579 |
|   |        |            | Obtain at least two more correct iterates                                                                                 | A1     | showing at least 3 decimal places                                                                                                                                                  | 2.12 0 2.12223 0 2.1227 1 0 2.12277                                        |
|   |        |            | Obtain 2.156                                                                                                              | A1     | final answer needed to exactly 3 d.p.;<br>not given for 2.156 as final iterate in<br>sequence, i.e. needs indication<br>(perhaps just underlining) that value<br>of <i>a</i> found | 2.2® 2.15980® 2.15616® 2.15583® 2.15580 answer only: 0/4                   |
|   |        |            |                                                                                                                           | [4]    |                                                                                                                                                                                    |                                                                            |

|   | Questi | on | Answer                                                                                                                                                                              | Marks     | G                                                                                                                                                                                                                                                                                 | uidance                                                                                                                                                                                                                                                                                                  |
|---|--------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |    |                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
| 7 | (i)    |    | Integrate to obtain $k(4x+1)^{\frac{1}{2}}$ or $ku^{\frac{1}{2}}$                                                                                                                   | *M1       | any constant k                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |
|   |        |    | Obtain correct $\frac{1}{2}\sqrt{3}(4x+1)^{\frac{1}{2}}$ or $\frac{1}{2}\sqrt{3}u^{\frac{1}{2}}$                                                                                    | A1        | or exact equiv                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |
|   |        |    | Apply limits 0 and 20 and attempt subtraction of area of rectangle (or limits 1 and 81 if $u$ involved)  Obtain $4\sqrt{3} - \frac{20}{9}\sqrt{3}$ and hence $\frac{16}{9}\sqrt{3}$ | M1 A1 [4] | dep *M; or equiv such as including term $-\frac{1}{9}\sqrt{3}$ in the integration or finding $\mathbf{\mathring{O}}_{1}^{1}\sqrt{3}$ dx separately; allow M1 if decimal values used here answer must be exact and a single term; $\frac{16}{9}\sqrt{3} + c$ as answer is final A0 | Alternative: (region between curve and y-axis)  Obtain equation $x = \frac{3}{4}y^{-2} - \frac{1}{4}$ B1  Integrate to obtain form $k_1y^{-1} + k_2y$ *M1  Apply limits $\frac{1}{9}\sqrt{3}$ and $\sqrt{3}$ the right way round M1 d*M  Obtain $\frac{6}{\sqrt{3}} - \frac{8}{36}\sqrt{3}$ or better A1 |
|   | (ii)   |    | State volume is $\rho \grave{O}_{4x+1}$ dx                                                                                                                                          | B1        | no need for limits here; condone absence of $dx$ ; condone absence of $p$ here if it appears later in solution                                                                                                                                                                    | allow B1 for $y^2 = \frac{3}{4x+1}$ stated                                                                                                                                                                                                                                                               |
|   |        |    | Obtain integral of form $k \ln(4x+1)$                                                                                                                                               | M1        | any constant $k$ with or without $p$                                                                                                                                                                                                                                              | if brackets missing, and subsequent calculation does not show their 'presence', marks are max B1M1A0A0M1A0                                                                                                                                                                                               |
|   |        |    | Obtain $\frac{3}{4}\rho \ln(4x+1)$ or $\frac{3}{4}\ln(4x+1)$                                                                                                                        | A1        |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
|   |        |    | Apply limits to obtain $\frac{3}{4}\rho \ln 81$ or $\frac{3}{4}\ln 81$                                                                                                              | A1        | or exact equiv perhaps with ln1 present                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                          |
|   |        |    | Attempt to subtract volume of cylinder, using correct radius and 'height'                                                                                                           | M1        | with exact volume of cylinder attempted                                                                                                                                                                                                                                           | do not treat rotation around <i>y</i> -axis as mis-read: this is 0/6                                                                                                                                                                                                                                     |
|   |        |    | Obtain $3p \ln 3 - \frac{20}{27}p$ or $p(\frac{3}{4}\ln 81 - \frac{20}{27})$                                                                                                        | A1        | or exact equiv involving two terms                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |
|   |        |    |                                                                                                                                                                                     | [6]       |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
|   |        |    |                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
|   |        |    |                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |
|   |        |    |                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |

|   | Questi | on  | Answer                                                                                                                                                      | Marks        | G                                                                                                                    | uidance                                                                                                                                            |
|---|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (i)    |     | Attempt use of quotient rule or equiv                                                                                                                       | M1           | condone one slip only but must be<br>subtraction in numerator; condone<br>absence of necessary brackets; or equiv    |                                                                                                                                                    |
|   |        |     | Obtain $\frac{2(x^2+5)-2x(2x+4)}{(x^2+5)^2}$                                                                                                                | A1           | or correct equiv; now with brackets as necessary                                                                     | correct numerator but error in denominator:<br>max M1A0A1M1A1A1;<br>numerator wrong way round:                                                     |
|   |        |     | Obtain $-2x^2 - 8x + 10 = 0$                                                                                                                                | A1           | or equiv involving three terms                                                                                       | max M0A0A0M1A1A1                                                                                                                                   |
|   |        |     | Attempt solution of three-term quadratic equation based on numerator of derivative (even if their equation has no real roots)                               | M1           | implied by no working but 2 correct values obtained                                                                  | M1 for factorisation awarded if attempt is such that $x^2$ term and one other term correct upon expansion; if formula used, M1 awarded as per Qn 2 |
|   |        |     | Obtain - 5 and 1                                                                                                                                            | A1           |                                                                                                                      |                                                                                                                                                    |
|   |        |     | Obtain $(-5, -\frac{1}{5})$ and $(1, 1)$                                                                                                                    | A1           | Allow - $\frac{6}{30}$                                                                                               |                                                                                                                                                    |
|   | (ii)   | (a) | Sketch (more or less) correct curve                                                                                                                         | [ <b>6</b> ] | showing negative part reflected in <i>x</i> -axis                                                                    |                                                                                                                                                    |
|   | (II)   | (a) | Sketch (more of less) correct curve                                                                                                                         | Б            | and positive part unchanged; ignore intercept values on axes, right or wrong                                         |                                                                                                                                                    |
|   |        |     | State values between 0 and their y-value of maximum point lying in first quadrant                                                                           | M1           | accept £ or < signs here                                                                                             |                                                                                                                                                    |
|   |        |     | State correct 0 £ y £1                                                                                                                                      | A1ft         | following their y-value of maximum point in first quadrant; now with £ signs; or equiv perhaps involving g or $g(x)$ | for " $y$ 3 0 and $y$ £1", award M1A1;<br>for separate statements $y$ 3 0, $y$ £1,<br>award M1A0                                                   |
|   |        |     |                                                                                                                                                             | [3]          |                                                                                                                      |                                                                                                                                                    |
|   | (ii)   | (b) | Indicate, in some way, values between y-coordinates of maximum point and reflected minimum point (provided their y-coordinate of minimum point is negative) | M1           | allow £ sign(s) here; could be clear indication on graph                                                             | for " $k > \frac{1}{5}$ and $k < 1$ ", award M1A1; for separate statements, award M1A0                                                             |
|   |        |     | State $\frac{1}{5} < k < 1$                                                                                                                                 | A1           | or correct equiv; not £ now; correct answer only earns M1A1                                                          |                                                                                                                                                    |
|   |        |     |                                                                                                                                                             | [2]          |                                                                                                                      |                                                                                                                                                    |

|   | )uesti | on  | Answer                                                                                                                                    | Marks              | G                                                                                                                                          | uidance                                                               |
|---|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 9 | (i)    |     | Simplify to obtain $\frac{11}{2}\cos q + \frac{5\sqrt{3}}{2}\sin q$                                                                       | B1                 | or equiv with two terms perhaps with sin 60 retained                                                                                       | accept decimal values                                                 |
|   |        |     | Attempt correct process to find $R$                                                                                                       | M1                 | for expression of form $a\cos q + b\sin q$                                                                                                 | obtained after initial simplification                                 |
|   |        |     | Attempt correct process to find a                                                                                                         | M1                 | for expression of form $a\cos q + b\sin q$ ;                                                                                               | obtained after initial simplification                                 |
|   |        |     |                                                                                                                                           |                    | condone $\sin a = \frac{11}{2}$ , $\cos a = \frac{5}{2}\sqrt{3}$                                                                           |                                                                       |
|   |        |     | Obtain $7\sin(q+51.8)$                                                                                                                    | A1                 | or greater accuracy 51.786                                                                                                                 |                                                                       |
|   |        |     |                                                                                                                                           | [4]                |                                                                                                                                            |                                                                       |
|   | (ii)   | (a) | State stretch and translation in either order                                                                                             | M1                 | or equiv but using correct terminology, not move, squash,                                                                                  | SC: if M0 but one transformation completely correct, award B1 for 1/3 |
|   |        |     | State stretch parallel to <i>y</i> -axis with factor $\frac{1}{7}$                                                                        | A1ft               | following their <i>R</i> and clearly indicating correct direction                                                                          |                                                                       |
|   |        |     | State translation parallel to $q$ -axis or $x$ -axis by 51.8 in positive direction or state translation by vector $g$ $g$ $g$ $g$ $g$ $g$ | A1ft               | following their <i>a</i> and clearly indicating correct direction; or equiv such as 308.2 parallel to <i>x</i> -axis in negative direction |                                                                       |
|   |        |     |                                                                                                                                           | [3]                |                                                                                                                                            |                                                                       |
|   |        | (b) | State left-hand side (their $R$ ) $\sin(\frac{1}{3}b + g)$<br>where $g^1$ ±(their $a$ ), $g^1$ ±40, $g^1$ ±20                             | M1                 | or equiv such as stating $q = \frac{1}{3}b + 20$                                                                                           |                                                                       |
|   |        |     | Obtain (their <i>R</i> ) $\sin(\frac{1}{3}b + \text{their } a + 20) = 3$                                                                  | A1ft               | (and, in this case, allowing A1ft provided value of $\frac{1}{3}b$ attempted later)                                                        |                                                                       |
|   |        |     |                                                                                                                                           |                    |                                                                                                                                            |                                                                       |
|   |        |     | Attempt correct process to find any value of $\frac{1}{3}b$                                                                               | M1                 | for equation of form $\sin(\frac{1}{3}b + g) = k$ where $ k  < 1, k^{-1} = 0$                                                              |                                                                       |
|   |        |     | Attempt complete process to find positive value of $b$                                                                                    | M1                 | including choosing second quadrant value of their $\sin^{-1} \frac{3}{7}$                                                                  |                                                                       |
|   |        |     | Obtain 248 or 249 or 248.5                                                                                                                | A1<br>[ <b>5</b> ] | or greater accuracy 248.508                                                                                                                |                                                                       |